Олимпиадные задачи из источника «выпуск 11» - сложность 3 с решениями
выпуск 11
НазадВ квадратной таблице 4×4 расставлены числа 1, 2, 3, ..., 16 так, что сумма четырёх чисел в каждой строке, в каждом столбце и на каждой из двух диагоналей равна одному и тому же числу, причём числа 1 и 16 стоят в противоположных углах таблицы. Докажите, что в этом "магическом квадрате" сумма любых двух чисел, расположенных симметрично относительно центра квадрата, одна и та же.
На плоскости нарисован правильный шестиугольник, длина стороны которого равна 1. При помощи одной только линейки постройте отрезок, длина которого равна <img align="absmiddle" src="/storage/problem-media/73706/problem_73706_img_2.gif">
Докажите, что при любом простом <i>p</i> <img align="middle" src="/storage/problem-media/60750/problem_60750_img_2.gif"> делится на <i>p</i>.