Олимпиадные задачи из источника «1971 год» - сложность 5 с решениями
Если на каждой грани выпуклого многогранника выбрать по точке и провести из этой точки направленный перпендикулярно соответствующей грани во внешнюю сторону вектор, длина которого равна площади этой грани, то сумма всех таких векторов окажется равна нулю. Докажите это.
Множество, состоящее из конечного числа точек плоскости, обладает следующим свойством: для любых двух его точек<i>A</i><nobr>и <i>B</i></nobr>существует такая<nobr>точка <i>С</i></nobr>этого множества, что треугольник<i>ABC</i>равносторонний. Сколько точек может содержать такое множество?
Двое играют в «крестики–нолики» на бесконечном листе клетчатой бумаги. Начинающий ставит крестик в любую клетку. Каждым следующим своим ходом он должен ставить крестик в свободную клетку, соседнюю с одной из клеток, где уже стоит крестик; соседней с данной клеткой считаем любую, имеющую с ней общую сторону или общую вершину. Второй играющий каждым своим ходом может ставить сразу три нолика в любые три свободные клетки (не обязательно рядом друг с другом или с ранее поставленными ноликами). На рисунке изображена одна из позиций, которые могут возникнуть после третьего хода. Докажите, что как бы ни играл первый игрок, второй может его «запереть»: добиться того, чтобы первому было некуда поставить крестик. Исследуйте аналогичные игры, в которых второму разрешено за один ход ставить не три, а...
а) Сумма длин рёбер любого выпуклого многогранника больше утроенного диаметра. Докажите это.<span class="prim">(Диаметром многогранника называют наибольшую из длин всевозможных отрезков с концами в вершинах многогранника.)</span>б) Для любых двух <nobr>вершин <i>A</i></nobr> <nobr>и <i>B</i></nobr> любого выпуклого многогранника существуют три ломаные, каждая из которых идёт по рёбрам многогранника <nobr>из <i>А</i></nobr> <nobr>в <i>В</i></nobr> и никакие две не проходят по одному ребру. Докажите это. в) Если в выпуклом многограннике разрезать два ребра, то для любых двух его <nobr>вершин <i>А</i></nobr> <nobr>и <i>В</i></nobr&g...
Пусть<i>l</i><sub>1</sub>,<i>l</i><sub>2</sub>, ...,<nobr><i>l</i><sub><i>n</i></sub> —</nobr>несколько прямых на плоскости, не все из которых параллельны. Докажите, что можно единственным образом выбрать на каждой из этих прямых по точке<i>X</i><sub>1</sub>,<i>X</i><sub>2</sub>, ...,<i>X</i><sub><i>n</i></sub>так, чтобы перпендикуляр, восставленный к прямой<i>l</i><sub><i>k</i></sub>в точке<i>X</i><sub><i>k</i></sub>(для любого натурального<nobr><i>k</i> < <i>n</i>),</nobr>проходил через точку<i>X...
В квадрате со стороной 1 расположена фигура, расстояние между любыми двумя точками которой не равно 0, 001. Докажите, что площадь этой фигуры не превосходит: а) 0, 34; б) 0, 287.