Олимпиадные задачи из источника «параграф 9. Четырехугольник» для 5-10 класса - сложность 3-5 с решениями
параграф 9. Четырехугольник
НазадВ параллелограмм <i>P</i><sub>1</sub> вписан параллелограмм <i>P</i><sub>2</sub>, а в параллелограмм <i>P</i><sub>2</sub> вписан параллелограмм <i>P</i><sub>3</sub>, стороны которого параллельны сторонам <i>P</i><sub>1</sub>. Докажите, что длина хотя бы одной из сторон <i>P</i><sub>1</sub> не превосходит удвоенной длины параллельной ей стороны <i>P</i><sub>3</sub>.
Отрезок <i>KL</i>проходит через точку пересечения диагоналей четырехугольника <i>ABCD</i>, а концы его лежат на сторонах <i>AB</i>и <i>CD</i>. Докажите, что длина отрезка <i>KL</i>не превосходит длины одной из диагоналей.
Докажите, что расстояние от одной из вершин выпуклого четырехугольника до противоположной диагонали не превосходит половины этой диагонали.
Диагонали делят выпуклый четырехугольник <i>ABCD</i>на четыре треугольника. Пусть <i>P</i> — периметр четырехугольника <i>ABCD</i>, <i>Q</i> — периметр четырехугольника, образованного центрами вписанных окружностей полученных треугольников. Докажите, что <i>PQ</i>> 4<i>S</i><sub>ABCD</sub>.
Пусть <i>M</i>и <i>N</i> — середины сторон <i>BC</i>и <i>CD</i>выпуклого четырехугольника <i>ABCD</i>. Докажите, что <i>S</i><sub>ABCD</sub>< 4<i>S</i><sub>AMN</sub>.
Дан четырёхугольник <i>ABCD</i>. Докажите, что <i>AC·BD ≤ AB·CD + BC·AD</i>.