Олимпиадные задачи из источника «параграф 6. Неравенства для площадей» - сложность 4 с решениями

Проекции многоугольника на ось<i>OX</i>, биссектрису 1-го и 3-го координатных углов, ось<i>OY</i>и биссектрису 2-го и 4-го координатных углов равны соответственно 4, 3$\sqrt{2}$, 5, 4$\sqrt{2}$. Площадь многоугольника —<i>S</i>. Докажите, что<i>S</i>$\le$17, 5.

а) Докажите, что в любом выпуклом шестиугольнике площади <i>S</i>найдется диагональ, отсекающая от него треугольник площади не больше <i>S</i>/6. б) Докажите, что в любом выпуклом восьмиугольнике площади <i>S</i>найдется диагональ, отсекающая от него треугольник площади не больше <i>S</i>/8.

Докажите, что сумма площадей пяти треугольников, образованных парами соседних сторон и соответствующими диагоналями выпуклого пятиугольника, больше площади всего пятиугольника.

Все стороны выпуклого многоугольника отодвигаются во внешнюю сторону на расстояние <i>h</i>. Докажите, что его площадь при этом увеличится больше чем на <i>Ph</i>+$\pi$<i>h</i><sup>2</sup>, где <i>P</i> — периметр.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка