Олимпиадные задачи из источника «параграф 10. Многоугольники» для 7-11 класса - сложность 2-3 с решениями

Докажите, что из сторон выпуклого многоугольника периметра <i>P</i>можно составить два отрезка, длины которых отличаются не более чем на <i>P</i>/3.

а) Докажите, что если длины проекций отрезка на две взаимно перпендикулярные прямые равны <i>a</i>и <i>b</i>, то его длина не меньше (<i>a</i>+<i>b</i>)/$\sqrt{2}$. б) Длины проекций многоугольника на координатные оси равны <i>a</i>и <i>b</i>. Докажите, что его периметр не меньше $\sqrt{2}$(<i>a</i>+<i>b</i>).

Длины сторон выпуклого шестиугольника <i>ABCDEF</i>меньше 1. Докажите, что длина одной из диагоналей <i>AD</i>,<i>BE</i>,<i>CF</i>меньше 2.

Докажите, что если стороны выпуклого шестиугольника <i>ABCDEF</i>равны 1, то радиус описанной окружности одного из треугольников <i>ACE</i>и <i>BDF</i>не превосходит 1.

Внутри правильного шестиугольника со стороной 1 взята точка <i>P</i>. Докажите, что расстояния от точки <i>P</i>до некоторых трех вершин шестиугольника не меньше 1.

Пусть <i>ABCDE</i> — выпуклый пятиугольник, вписанный в окружность радиуса 1, причем <i>AB</i>=<i>a</i>,<i>BC</i>=<i>b</i>,<i>CD</i>=<i>c</i>,<i>DE</i>=<i>d</i>,<i>AE</i>= 2. Докажите, что<div align="CENTER"> <i>a</i><sup>2</sup> + <i>b</i><sup>2</sup> + <i>c</i><sup>2</sup> + <i>d</i><sup>2</sup> + <i>abc</i> + <i>bcd</i> < 4. </div>

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка