Олимпиадные задачи из источника «параграф 1. Вписанные и описанные четырехугольники» для 8 класса - сложность 2-4 с решениями

Докажите, что если диагонали четырехугольника перпендикулярны, то проекции точки пересечения диагоналей на стороны являются вершинами вписанного четырехугольника.

Докажите, что проекции точки пересечения диагоналей вписанного четырехугольника на его стороны являются вершинами описанного четырехугольника, если только они не попадают на продолжения сторон.

Диагональ <i>AC</i>разбивает четырехугольник <i>ABCD</i>на два треугольника, вписанные окружности которых касаются диагонали <i>AC</i>в одной точке. Докажите, что вписанные окружности треугольников <i>ABD</i>и <i>BCD</i>тоже касаются диагонали <i>BD</i>в одной точке, а точки их касания со сторонами четырехугольника лежат на одной окружности.

Четырехугольник <i>ABCD</i>вписанный; <i>H</i><sub>c</sub>и <i>H</i><sub>d</sub> — ортоцентры треугольников <i>ABD</i>и <i>ABC</i>. Докажите, что <i>CDH</i><sub>c</sub><i>H</i><sub>d</sub> — параллелограмм.

Через точки пересечения продолжений сторон выпуклого четырехугольника <i>ABCD</i>проведены две прямые, делящие его на четыре четырехугольника. Докажите, что если четырехугольники, примыкающие к вершинам <i>B</i>и <i>D</i>, описанные, то четырехугольник <i>ABCD</i>тоже описанный.

Дан выпуклый четырехугольник <i>ABCD</i>. Лучи <i>AB</i>и <i>CD</i>пересекаются в точке <i>P</i>, а лучи <i>BC</i>и <i>AD</i> — в точке <i>Q</i>. Докажите, что четырехугольник <i>ABCD</i>описанный тогда и только тогда, когда выполняется одно из следующих условий: <i>AB</i>+<i>CD</i>=<i>BC</i>+<i>AD</i>,<i>AP</i>+<i>CQ</i>=<i>AQ</i>+<i>CP</i>или <i>BP</i>+<i>BQ</i>=<i>DP</i>+<i>DQ</i>.

В треугольнике <i>ABC</i>проведены отрезки <i>PQ</i>и <i>RS</i>, параллельные стороне <i>AC</i>, и отрезок <i>BM</i>(рис.). Трапеции <i>RPKL</i>и <i>MLSC</i>описанные. Докажите, что трапеция <i>APQC</i>тоже описанная.

<div align="center"><img src="/storage/problem-media/57016/problem_57016_img_2.gif" border="1"></div>

Углы при основании <i>AD</i>трапеции <i>ABCD</i>равны 2$\alpha$и 2$\beta$. Докажите, что трапеция описанная тогда и только тогда, когда <i>BC</i>/<i>AD</i>=<i>tg</i>$\alpha$<i>tg</i>$\beta$.

Четырехугольник <i>ABCD</i>описан около окружности с центром <i>O</i>. В треугольнике <i>AOB</i>проведены высоты <i>AA</i><sub>1</sub>и <i>BB</i><sub>1</sub>, а в треугольнике <i>COD</i> — высоты <i>CC</i><sub>1</sub>и <i>DD</i><sub>1</sub>. Докажите, что точки <i>A</i><sub>1</sub>,<i>B</i><sub>1</sub>,<i>C</i><sub>1</sub>и <i>D</i><sub>1</sub>лежат на одной прямой.

Окружность высекает на всех четырех сторонах четырехугольника равные хорды. Докажите, что в этот четырехугольник можно вписать окружность.

Докажите, что если существует окружность, касающаяся всех сторон выпуклого четырехугольника <i>ABCD</i>, и окружность, касающаяся продолжений всех его сторон, то диагонали такого четырехугольника перпендикулярны.

Докажите, что если центр вписанной в четырехугольник окружности совпадает с точкой пересечения диагоналей, то этот четырехугольник — ромб.

Четырёхугольник <i>ABCD</i> вписан в окружность; <i>O</i><sub>1</sub>, <i>O</i><sub>2</sub>, <i>O</i><sub>3</sub>, <i>O</i><sub>4</sub> — центры окружностей, вписанных в треугольники <i>ABC</i>, <i>BCD</i>, <i>CDA</i> и <i>DAB</i>. Докажите, что <!-- MATH $O_{1}O_{2}O_{3}O_{4}$ --> <i>O</i><sub>1</sub><i>O</i><sub>2</sub><i>O</i><sub>3</sub><i>O</i><sub>4</sub> -- прямоугольник.

Докажите, что во всяком описанном четырёхугольнике середины диагоналей и центр вписанной окружности расположены на одной прямой.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка