Олимпиадные задачи из источника «глава 4. Площадь» для 2-8 класса

Точка <i>O</i>, лежащая внутри правильного шестиугольника, соединена с вершинами. Возникшие при этом шесть треугольников раскрашены попеременно в красный и синий цвет. Докажите, что сумма площадей красных треугольников равна сумме площадей синих.

Пусть <i>K, L, M, N</i> – середины сторон <i>AB, BC, CD, AD</i> выпуклого четырёхугольника <i>ABCD</i>; отрезки <i>KM</i> и <i>LN</i> пересекаются в точке <i>O</i>.

Докажите, что   <i>S<sub>AKON</sub> + S<sub>CLOM</sub> = S<sub>BKOL</sub> + S<sub>DNOM</sub></i>.

Прямая <i>l</i> делит площадь выпуклого многоугольника пополам. Докажите, что эта прямая делит проекцию данного многоугольника на прямую, перпендикулярную <i>l</i>, в отношении, не превосходящем  1 + <img width="25" height="36" align="MIDDLE" border="0" src="/storage/problem-media/56788/problem_56788_img_2.gif">.

Каждая из трех прямых делит площадь фигуры пополам. Докажите, что часть фигуры, заключенная внутри треугольника, образованного этими прямыми, имеет площадь, не превосходящую 1/4 площади всей фигуры.

Отрезок <i>MN</i>, параллельный стороне <i>CD</i>четырехугольника <i>ABCD</i>, делит его площадь пополам (точки <i>M</i>и <i>N</i>лежат на сторонах <i>BC</i>и <i>AD</i>). Длины отрезков, проведенных из точек <i>A</i>и <i>B</i>параллельно <i>CD</i>до пересечения с прямыми <i>BC</i>и <i>AD</i>, равны <i>a</i>и <i>b</i>. Докажите, что <i>MN</i><sup>2</sup>= (<i>ab</i>+<i>c</i><sup>2</sup>)/2, где <i>c</i>=<i>CD</i>.

Каждая из сторон выпуклого четырехугольника разделена на пять равных частей и соответствующие точки противоположных сторон соединены (см. рис.). Докажите, что площадь среднего (заштрихованного) четырехугольника в 25 раз меньше площади исходного.

<div align="center"><img src="/storage/problem-media/56772/problem_56772_img_2.gif" border="1"></div>

Докажите, что медианы разбивают треугольник на шесть равновеликих треугольников.

Точка $X$ расположена внутри параллелограмма $ABCD$. Докажите, что $S_{ABX}+S_{CDX}=S_{BCX}+S_{ADX}$.

Докажите, что площадь выпуклого четырехугольника равна $\frac12 d_1 d_2\sin\varphi$, где $d_1$ и $d_2$ — длины диагоналей, а $\varphi$ — угол между ними.

Высота трапеции, диагонали которой взаимно перпендикулярны, равна 4. Найдите площадь трапеции, если известно, что одна из её диагоналей равна 5.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка