Задача
Точка $X$ расположена внутри параллелограмма $ABCD$. Докажите, что $S_{ABX}+S_{CDX}=S_{BCX}+S_{ADX}$.
Решение
Сумма площадей треугольников $ABX$ и $CDX$ равна половине произведения стороны $AB$ на сумму расстояний от точки $X$ до параллельных прямых $AB$ и $CD$, то есть равна половине произведения стороны $AB$ на высоту параллелограмма, перпендикулярную $AB$. То есть сумма площадей треугольников $ABX$ и $CDX$ равна половине площади параллелограмма $ABCD$; значит, сумма оставшихся треугольников также равна половине площади параллелограмма.
Ответ
Ответ задачи отсутствует
Чтобы оставлять комментарии, войдите или зарегистрируйтесь
Комментариев нет