Олимпиадные задачи из источника «глава 31. Эллипс, парабола, гипербола» - сложность 3-5 с решениями

Вершины<i>A</i>и<i>B</i>треугольника<i>ABC</i>скользят по сторонам прямого угла. Докажите, что если угол<i>C</i>не прямой, то вершина<i>C</i>перемещается при этом по эллипсу.

Докажите, что если вершины шестиугольника<i>ABCDEF</i>лежат на одной конике, то точки пересечения продолжений его противоположных сторон (т. е. прямых<i>AB</i>и<i>DE</i>,<i>BC</i>и<i>EF</i>,<i>CD</i>и<i>AF</i>) лежат на одной прямой (Паскаль).

Докажите, что все вписанные в эллипс ромбы описаны вокруг одной окружности.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка