Олимпиадные задачи из источника «глава 26. Системы точек и отрезков. Примеры и контрпримеры» для 8-9 класса - сложность 3 с решениями

Арена цирка освещается <i>n</i> различными прожекторами. Каждый прожектор освещает выпуклую фигуру. Известно, что если выключить любой прожектор, то арена будет по-прежнему полностью освещена, а если выключить любые два прожектора, то арена будет освещена не полностью. При каких <i>n</i> это возможно?

Существуют ли на плоскости три такие точки <i>A</i>,<i>B</i>и <i>C</i>, что для любой точки <i>X</i>длина хотя бы одного из отрезков<i>XA</i>,<i>XB</i>и <i>XC</i>иррациональна?

Пусть<i>n</i>$\ge$3. Существуют ли <i>n</i>точек, не лежащих на одной прямой, попарные расстояния между которыми иррациональны, а площади всех треугольников с вершинами в них рациональны?

Список упорядоченных в порядке возрастания длин сторон и диагоналей одного выпуклого четырехугольника совпадает с таким же списком для другого четырехугольника. Обязательно ли эти четырехугольники равны?

На плоскости дано 400 точек. Докажите, что различных расстояний между ними не менее 15.

На плоскости дано<i>n</i>точек, причем из любой четверки этих точек можно выбросить одну точку так, что оставшиеся точки будут лежать на одной прямой. Докажите, что из данных точек можно выбросить одну точку так, что все оставшиеся точки будут лежать на одной прямой.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка