Олимпиадные задачи из источника «Иванов С.В., Математический кружок» для 2-7 класса
Иванов С.В., Математический кружок
НазадДоказать, что остаток от деления простого числа на 30 – простое число или единица.
В каждой вершине куба стоит число +1 или –1. В центре каждой грани куба поставлено число, равное произведению чисел в вершинах этой грани.
Может ли сумма получившихся 14 чисел оказаться равной 0?
На прямой сидят три кузнечика, каждую секунду прыгает один кузнечик. Он прыгает через какого-нибудь кузнечика (но не через двух сразу).
Докажите, что через 1985 секунд они не могут вернуться в исходное положение.
Докажите, что множество простых чисел вида <i>p</i> = 6<i>k</i> + 5 бесконечно.
Докажите, что множество простых чисел вида <i>p</i> = 4<i>k</i> + 3 бесконечно.
Может ли прямая пересекать (во внутренних точках) все стороны невыпуклого:
а) (2<i>n</i>+1)-угольника; б) 2<i>n</i>-угольника?
На шахматной доске расставлены 8 ладей так, что они не бьют друг друга. Докажите, что на полях чёрного цвета расположено чётное число ладей.
У Царя Гвидона было 5 сыновей. Среди его потомков 100 имели каждый ровно по 3 сына, а остальные умерли бездетными.
Сколько потомков было у царя Гвидона?
Существует ли 25-звенная ломаная, пересекающая каждое свое звено ровно три раза?
Имеются две одинаковых шестеренки по 14 зубьев на общей оси. Их совместили и выбили четыре пары зубьев.
Доказать, что шестеренки можно повернуть так, что они образуют полноценную шестеренку (без дырок).
Несколько человек построились в два ряда. Каждый во втором ряду выше стоящего перед ним. Доказать, что если каждый ряд построить по росту, то это свойство сохранится.
Несколько человек стоят прямоугольником. В каждой шеренге выбрали самого нижнего, в каждом ряду самого высокого. Кто выше: самый низкий из высоких или самый высокий из низких?
В поселке 100 домов. Какое наибольшее число замкнутых не пересекающихся заборов можно построить, чтобы каждый забор огораживал хотя бы один дом и никакие два забора не огораживали бы одну и ту же совокупность домов?
12 шахматистов сыграли турнир в один круг. Потом каждый из них написал 12 списков. В первом только он, в (<i>k</i>+1)-м – те, кто были в <i>k</i>-м и те, у кого они выиграли. Оказалось, что у каждого шахматиста 12-й список отличается от 11-го. Сколько было ничьих?
Имеется бесконечная арифметическая прогрессия с натуральными членами. Доказать, что найдётся член, в котором есть 100 девяток подряд.
В прямоугольнике 3×<i>n</i> стоят фишки трёх цветов, по <i>n</i> штук каждого цвета.
Доказать, что можно переставить фишки в каждой строке так, чтобы в каждом столбце были фишки всех цветов.
В ряд выписаны числа от 1 до 9999. Как вычеркнуть из этой записи 100 цифр так, чтобы оставшееся число было a) максимальным b) минимальным?
В центре куба<img width="69" height="29" align="MIDDLE" border="0" src="/storage/problem-media/31367/problem_31367_img_2.gif">сидит жук. Доказать, что он, переползая через ребра, не сможет обойти все кубики<img width="69" height="29" align="MIDDLE" border="0" src="/storage/problem-media/31367/problem_31367_img_3.gif">по одному разу.
Матч между двумя футбольными командами закончился со счетом 8:5. Доказать, что был момент, когда первая команда забила столько же мячей, сколько второй оставалось забить.
Когда встречаются два жителя Цветочного города, один отдает другому монету в 10 копеек, а тот ему - 2 монеты по 5 копеек. Могло ли случиться так, что за день каждый из 1990 жителей города отдал ровно 10 монет?
12 команд сыграли турнир по волейболу в один круг. Две команды одержали ровно по 7 побед.
Доказать, что найдутся такие команды <i>А, В, С</i>, что <i>А</i> выиграла у <i>В, В</i> выиграла у <i>С</i>, а <i>С</i> – у <i>А</i>.
а) В группе из четырёх человек, говорящих на разных языках, любые трое могут общаться (возможно, один переводит двум другим).
Доказать, что их можно разбить на пары, в каждой из которых имеется общий язык.
б) То же для группы из 100 человек.
в) То же для группы из 102 человек.
Некто А загадал число от 1 до 15. Некто В задает вопросы на
которые можно отвечать да" или нет". Может ли В отгадать число,
задав a) 4 вопроса; б) 3
вопроса.
Квадрат<img width="40" height="29" align="MIDDLE" border="0" src="/storage/problem-media/31361/problem_31361_img_2.gif">раскрашен в два цвета. Можно любой прямоугольник<img width="40" height="29" align="MIDDLE" border="0" src="/storage/problem-media/31361/problem_31361_img_3.gif">перекрашивать в преобладающий в нем цвет. Доказать, что такими операциями можно сделать весь квадрат одноцветным.
30 команд сыграли турнир по олимпийской системе. Сколько всего было сыграно матчей?