Олимпиадные задачи из источника «глава 8. Алгебра + геометрия» - сложность 3 с решениями
глава 8. Алгебра + геометрия
НазадПусть<div align="CENTER"> <i>u</i><sub>k</sub> = $\displaystyle {\dfrac{\sin2nx\cdot\sin(2n-1)\cdot x\ldots\cdot\sin(2n-k+1)x}{\sin kx\cdot\sin(k-1)x\cdot\ldots\cdot\sin x}}$. </div>Докажите, что числа<i>u</i><sub>k</sub>можно представить в виде многочлена от cos <i>x</i>.
<b>Вторая теорема косинусов для трехгранного угла и аналог формулы Герона.</b>Докажите, что из системы (<a href="https://mirolimp.ru/tasks/161247">8.6</a>) следуют равенства<div align="CENTER"> <!-- MATH \begin{equation} \begin{array}{c} \cos A=-\cos B\cos C+\sin B\sin C\cos \alpha,\\cos B=-\cos A\cos C+\sin A\sin C\cos \beta,\\cos C=-\cos A\cos B+\sin A\sin B\cos \gamma,\ \hbox{\rm tg\ }\dfrac{A+B+ C-\pi}{4}=\sqrt{\hbox{\rm tg\ }\dfrac{p}{2}\hbox{\rm tg\ }\dfrac{p-\alpha}{2} \hbox{\rm tg\ }\dfrac{p-\beta}{2}\hbox{\rm tg\ }\dfrac{p-\gamma}{2}}, \end{array} \end{equation} --> <table cellpadding="0" width="100%" align="CENTER"> <tr valign="MIDDLE"> <td nowrap align="CENTER...
Докажите, что числа Фибоначчи{<i>F</i><sub>n</sub>} удовлетворяют соотношению<div align="CENTER"> <!-- MATH \begin{equation} \hbox{\rm arctg\ }F_{2n}-\hbox{\rm arctg\ } F_{2n+2}=\hbox{\rm arctg\ }F_{2n+1}. \end{equation} --> <table cellpadding="0" width="100%" align="CENTER"> <tr valign="MIDDLE"> <td nowrap align="CENTER"><i>arcctg</i> <i>F</i><sub>2n</sub> - <i>arcctg</i> <i>F</i><sub>2n + 2</sub> = <i>arcctg</i> <i>F</i><sub>2n + 1</sub>.</td> <td nowrap width="10" align="RIGHT"> (8.2)</td></tr> </table></div><...
Найдите сумму:<div align="CENTER"> <i>arctg</i> $\displaystyle {\dfrac{r}{1+a_1\cdot a_2}}$ + <i>arctg</i> $\displaystyle {\dfrac{r}{1+a_2\cdot a_3}}$ +...+ <i>arctg</i> $\displaystyle {\dfrac{r}{1+a_n\cdot a_{n+1}}}$, </div>если числа<i>a</i><sub>1</sub>,<i>a</i><sub>2</sub>,...,<i>a</i><sub>n + 1</sub>образуют арифметическую прогрессию с разностью<i>r</i>(<i>a</i><sub>1</sub>> 0,<i>r</i>> 0).
Найдите сумму:<div align="CENTER"> <i>arctg</i> $\displaystyle {\dfrac{x}{1+1\cdot2x^2}}$ + <i>arctg</i> $\displaystyle {\dfrac{x}{1+2\cdot 3x^2}}$ +...+ <i>arctg</i> $\displaystyle {\dfrac{x}{1+n\cdot(n+1)x^2}}$ (<i>x</i> > 0). </div>
Найдите алгебраическую связь между углами$\alpha$,$\beta$и$\gamma$, если известно, что<div align="CENTER"> <i>tg</i> $\displaystyle \alpha$ + <i>tg</i> $\displaystyle \beta$ + <i>tg</i> $\displaystyle \gamma$ = <i>tg</i> $\displaystyle \alpha$<sup> . </sup><i>tg</i> $\displaystyle \beta$<sup> . </sup><i>tg</i> $\displaystyle \gamma$. </div>
На плоскости расположены 4 прямые общего положения. Каждым трем прямым поставим в соответствие окружность, проходящую через точки их пересечения. Докажите, что 4 полученных окружности проходят через одну точку.
Пусть <i>u</i> – точка на единичной окружности <i>z</i><img width="12" height="14" align="BOTTOM" border="0" src="/storage/problem-media/61197/problem_61197_img_2.gif"> = 1 и <i>u</i><sub>1</sub>, <i>u</i><sub>2</sub>, <i>u</i><sub>3</sub> – основания перпендикуляров, опущенных из <i>u</i> на стороны <i>a</i><sub>2</sub><i>a</i><sub>3</sub>, <i>a</i><sub>1</sub><i>a</i><sub>3</sub>, <i>a</i><sub>1</sub><i>a</i><sub>2</sub> вписанного в эту окружностьтреугольника <i>a</i><...
Докажите, что cтепень точки <i>w</i> относительно окружности <i>Az<span style="text-decoration: overline;">z</span> + Bz – <span style="text-decoration: overline;">B</span> <span style="text-decoration: overline;">z</span> + C</i> = 0 равна <img align="absmiddle" src="/storage/problem-media/61190/problem_61190_img_2.gif">
Докажите, что инверсия переводит каждую окружность или прямую линию снова в окружность или прямую линию.
Докажите, что уравнение <i>Az<span style="text-decoration: overline;">z</span> + Bz – <span style="text-decoration: overline;">B</span> <span style="text-decoration: overline;">z</span> + C</i> = 0 при отображениях <i>w = z + u</i> и <i>w = <sup>R</sup></i>/<sub><i>z</i></sub> переходит в уравнение такого же вида. Получите из этого круговое свойство дробно-линейных отображений (см. задачу <a href="https://mirolimp.ru/tasks/161183">161183</a>).
Докажите, что дробно-линейное отображение переводит каждую окружность или прямую линию снова в окружность или прямую линию.
Положительные числа <i>a, b, c, x, y</i>, таковы, что
<i>x</i>² + <i>xy + y</i>² = <i>a</i>²,
<i>y</i>² + <i>yz + z</i>² = <i>b</i>²,
<i>x</i>² + <i>xz + z</i>² = <i>c</i>².
Выразите величину <i>xy + yz + xz</i> через <i>a, b и c</i>.
Решите систему <img width="20" height="73" align="MIDDLE" border="0" src="/storage/problem-media/61173/problem_61173_img_2.gif"><img width="129" height="73" align="MIDDLE" border="0" src="/storage/problem-media/61173/problem_61173_img_3.gif"> Какой геометрический смысл она имеет?
Неотрицательные числа <i>x, y, z</i> удовлетворяют неравенствам 5 ≤ <i>x, y, z</i> ≤ 8.
Какое наибольшее и наименьшее значение может принимать величина <i>S</i> = 2<i>x</i>²<i>y</i>² + 2<i>x</i>²<i>z</i>² + 2<i>y</i>²<i>z</i>² – <i>x</i><sup>4</sup> – <i>y</i><sup>4</sup> – <i>z</i><sup>4</sup> ?
Пусть <i>x, y, z</i> – положительные числа и <i>xyz</i>(<i>x + y + z</i>) = 1. Найдите наименьшее значение выражения (<i>x + y</i>)(<i>x + z</i>).
Решите уравнения при0<sup><tt>o</tt></sup><<i>x</i>< 90<sup><tt>o</tt></sup>: a) $\sqrt{13-12\cos x}$+$\sqrt{7-4\sqrt3\sin x}$= 2$\sqrt{3}$;б) $\sqrt{2-2\cos x}$+$\sqrt{10-6\cos x}$=$\sqrt{10-6\cos 2x}$;в) $\sqrt{5-4\cos x}$+$\sqrt{13-12\sin x}$=$\sqrt{10}$.
а) Используя геометрические соображения, докажите, что основание и боковая сторона равнобедренного треугольника с углом36<sup><tt>o</tt></sup>при вершине несоизмеримы. б) Придумайте геометрическое доказательство иррациональности$\sqrt{2}$.
Найдите cos 36° и cos 72°.
Вычислите
а) cos <sup>π</sup>/<sub>9</sub> cos <sup>4π</sup>/<sub>9</sub> cos <sup>7π</sup>/<sub>9</sub>;
б) cos <sup>π</sup>/<sub>7</sub> + cos <sup>3π</sup>/<sub>7</sub> + cos <sup>5π</sup>/<sub>7</sub>.
Докажите равенства:
a) cos <sup>π</sup>/<sub>5</sub> – cos <sup>2π</sup>/<sub>5</sub> = ½;
б) cosec <sup>π</sup>/<sub>7</sub> = cosec <sup>2π</sup>/<sub>7</sub> + cosec <sup>3π</sup>/<sub>7</sub>;
в) sin 9° + sin 49° + sin 89° + ... + sin 329° = 0.
Пусть <i>О</i> – центр правильного многоугольника <i>A</i><sub>1</sub><i>A</i><sub>2</sub><i>A</i><sub>3</sub>...<i>A<sub>n</sub></i>, <i>X</i> – произвольная точка плоскости. Докажите, что:
a) <img align="middle" src="/storage/problem-media/55373/problem_55373_img_2.gif"> б) <img align="middle" src="/storage/problem-media/55373/problem_55373_img_3.gif">