Олимпиадные задачи из источника «глава 2. Комбинаторика» для 9-11 класса - сложность 1 с решениями
Имеется три ящика, в каждом из которых лежат шары с номерами от 0 до 9. Из каждого ящика вынимается по одному шару. Какова вероятность того, что а) вынуты три единицы; б) вынуты три равных числа?
В ящике имеется 10 белых и 15 чёрных шаров. Из ящика вынимаются четыре шара. Какова вероятность того, что все вынутые шары будут белыми?
Сколько существует различных возможностей рассадить 5 юношей и 5 девушек за круглый стол с 10 креслами так, чтобы они чередовались?
Сколько четырёхзначных чисел можно составить, используя цифры 1, 2, 3, 4 и 5, если:
а) никакая цифра не повторяется более одного раза;
б) повторения цифр допустимы;
в) числа должны быть нечётными и повторений цифр быть не должно?
Сколькими способами, двигаясь по следующей таблице от буквы к букве, <div align="CENTER"> <table cellpadding="3"> <tr><td align="CENTER"> </td> <td align="CENTER"> </td> <td align="CENTER"> </td> <td align="CENTER"> </td> <td align="CENTER"> </td> <td align="CENTER"> </td> <td align="CENTER">к</td> <td align="CENTER"> </td> <td align="CENTER"> </td> <td align="CENTER"> </td> <td align="CENTER"> </td> <td align="CENTER"> </td> <td align="CENTER"> </td> </tr> <tr&g...
Почему равенства 11² = 121 и 11³ = 1331 похожи на строчки треугольника Паскаля? Чему равно 11<sup>4</sup>?
Сколько существует шестизначных чисел, у которых каждая последующая цифра меньше предыдущей?
<i>Анаграммой</i> называется произвольное слово, полученное из данного слова перестановкой букв. Сколько анаграмм можно составить из слов:
а) "точка"; б) "прямая"; в) "перешеек"; г) "биссектриса"; д) "абракадабра"; е) "комбинаторика"?
Сколько диагоналей имеет выпуклый:
а) 10-угольник; б) <i>k</i>-угольник (<i>k</i> > 3)?
На плоскости дано <i>n</i> прямых общего положения. Чему равно число образованных ими треугольников?
Из класса, в котором учатся 28 человек, назначаются на дежурcтво в столовую 4 человека. а) Сколькими способами это можно сделать? б) Сколько существует способов набрать команду дежурных, в которую попадёт ученик этого класса Коля Васин?
Сколькими способами можно выбрать четырёх человек на четыре различные должности, если имеется девять кандидатов на эти должности?
Сколько существует различных пятицветных флагов с пятью вертикальными полосами одинаковой ширины, если можно использовать материю одиннадцати цветов? (Флаг здесь считается просто полотнищем, не прикреплённым ни к древку, ни к чему другому.)
а) Сколькими способами 28 учеников могут выстроиться в очередь в столовую?
б) Как изменится это число, если Петю Иванова и Колю Васина нельзя ставить друг за другом?
Сколько существует ожерелий, составленных из 17 различных бусинок?
Семнадцать девушек водят хоровод. Сколькими различными способами они могут встать в круг?
Количество перестановок множества из <i>n</i> элементов обозначается <i>P<sub>n</sub></i>. Докажите равенство <i>P<sub>n</sub> = n</i>!.
В пассажирском поезде 17 вагонов.
Сколькими способами можно распределить по вагонам 17 проводников, если за каждым вагоном закрепляется один проводник?
В мешке 70 шаров, отличающихся только цветом: 20 красных, 20 синих, 20 жёлтых, остальные – чёрные и белые.
Какое наименьшее число шаров надо вынуть из мешка, не видя их, чтобы среди них было не менее 10 шаров одного цвета?
Сколькими способами можно разложить семь монет различного достоинства по трём карманам?
Сколькими способами можно поставить 8 ладей на шахматную доску так, чтобы они не били друг друга?