Олимпиадные задачи из источника «глава 2. Комбинаторика» для 5-7 класса - сложность 1-4 с решениями

<b><em>Слоны, носороги, жирафы.</em></b>Во всех зоопарках, где есть слоны и носороги, нет жирафов. Во всех зоопарках, где есть носороги и нет жирафов, есть слоны. Наконец, во всех зоопарках, где есть слоны и жирафы, есть и носороги. Может ли быть такой зоопарк, в котором есть слоны, но нет ни жирафов, ни носорогов?

Докажите, что для любого натурального <i>a</i> найдётся такое натуральное <i>n</i>, что все числа  <i>n</i> + 1,  <i>n<sup>n</sup></i> + 1,  <i>n<sup>n<sup>n</sup></sup></i> + 1,  ...  делятся на <i>a</i>.

На плоскости дано <i>n</i> точек. Сколько имеется отрезков с концами в этих точках?

Из класса, в котором учатся 28 человек, назначаются на дежурcтво в столовую 4 человека.   а) Сколькими способами это можно сделать?   б) Сколько существует способов набрать команду дежурных, в которую попадёт ученик этого класса Коля Васин?

Сколькими способами можно выбрать четырёх человек на четыре различные должности, если имеется девять кандидатов на эти должности?

а) Сколькими способами 28 учеников могут выстроиться в очередь в столовую?

б) Как изменится это число, если Петю Иванова и Колю Васина нельзя ставить друг за другом?

Семнадцать девушек водят хоровод. Сколькими различными способами они могут встать в круг?

В пассажирском поезде 17 вагонов.

Сколькими способами можно распределить по вагонам 17 проводников, если за каждым вагоном закрепляется один проводник?

На плоскости даны шесть точек так, что никакие три из них не лежат на одной прямой. Каждая пара точек соединена отрезком синего или красного цвета. Докажите, что среди данных точек можно выбрать такие три, что все стороны образованного ими треугольника будут окрашены в один цвет.

В волейбольном турнире команды играют друг с другом по одному матчу. За победу дается одно очко, за поражение – ноль. Известно, что в один из моментов турнира все команды имели разное количество очков. Сколько очков набрала в конце турнира предпоследняя команда, и как она сыграла с победителем?

Сто человек сидят за круглым столом, причем более половины из них — мужчины. Докажите, что какие-то двое из мужчин сидят друг напротив друга.

Какое наибольшее число королей можно поставить на шахматной доске так, чтобы никакие два из них не били друг друга?

Некоторые точки из данного конечного множества соединены отрезками. Докажите, что найдутся две точки, из которых выходит поровну отрезков.

В мешке 70 шаров, отличающихся только цветом: 20 красных, 20 синих, 20 жёлтых, остальные – чёрные и белые.

Какое наименьшее число шаров надо вынуть из мешка, не видя их, чтобы среди них было не менее 10 шаров одного цвета?

Докажите, что среди москвичей есть два человека с равным числом волос, если известно, что у любого человека на голове менее одного миллиона волос.

Назовём натуральное число "симпатичным", если в его записи встречаются только нечётные цифры.

Сколько существует четырёхзначных "симпатичных" чисел?

Сколькими способами можно разложить семь монет различного достоинства по трём карманам?

Сколько существует девятизначных чисел, сумма цифр которых чётна?

Сколько существует пятизначных чисел, которые одинаково читаются слева направо и справа налево (например, таких как 54345, 17071)?

Сколько существует десятизначных чисел, в записи которых имеется хотя бы две одинаковые цифры?

Сколько существует шестизначных чисел, в записи которых есть хотя бы одна чётная цифра?

Сколько существует шестизначных чисел, делящихся на 5?

Алфавит племени Мумбо-Юмбо состоит из трёх букв. Словом является любая последовательность, состоящая не более чем из четырёх букв.

Сколько слов в языке племени Мумбо-Юмбо?

В языке одного древнего племени было 6 гласных и 8 согласных, причём при составлении слов гласные и согласные непременно чередовались. Сколько слов из девяти букв могло быть в этом языке?

В некоторой школе каждый школьник знаком с 32 школьницами, а каждая школьница – с 29 школьниками. Кого в школе больше: школьников или школьниц и во сколько раз?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка