Олимпиадные задачи из источника «глава 11. Последовательности и ряды» для 2-8 класса - сложность 1-2 с решениями
глава 11. Последовательности и ряды
НазадОбозначим через <i>P<sub>k,l</sub></i>(<i>n</i>) количество разбиений числа <i>n</i> на не более чем <i>k</i> слагаемых, каждое из которых не превосходит <i>l</i>.
Докажите равенства:
а) <i>P<sub>k,l</sub></i>(<i>n</i>) – <i>P</i><sub><i>k,l</i>–1</sub>(<i>n</i>) = <i>P</i><sub><i>k</i>–1,<i>l</i></sub>(<i>n – l</i>);
б) <i>P<sub>k,l</sub></i>(<i>n</i>) – <i>P</i><sub><i>k</i>–1,<i>l</i></sub>(<i>n</i>) = <i>P</i><sub><i>k,l</i>–1</sub&...
Переменные<i>x</i>и<i>y</i>связаны равенством<div align="CENTER"> <i>x</i> = <i>y</i> + <i>y</i><sup>2</sup> + <i>y</i><sup>3</sup> +...+ <i>y</i><sup>n</sup> +... </div>Разложите<i>y</i>по степеням<i>x</i>.
Каков знак<i>n</i>-го члена в разложении произведения<div align="CENTER"> (1 - <i>a</i>)(1 - <i>b</i>)(1 - <i>c</i>)(1 - <i>d</i> )...= 1 - <i>a</i> - <i>b</i> + <i>ab</i> - <i>c</i> + <i>ac</i> + <i>bc</i> - <i>abc</i> - <i>d</i> +... </div>(<i>n</i>= 0, 1, 2,...)?
Определите коэффициент<i>a</i><sub>n</sub>в разложении<div align="CENTER"> (1 + <i>qx</i>)(1 + <i>qx</i><sup>2</sup>)(1 + <i>qx</i><sup>4</sup>)(1 + <i>qx</i><sup>8</sup>)(1 + <i>qx</i><sup>16</sup>)...= <i>a</i><sub>0</sub> + <i>a</i><sub>1</sub><i>x</i> + <i>a</i><sub>2</sub><i>x</i><sup>2</sup> + <i>a</i><sub>3</sub><i>x</i><sup>3</sup> +... </div>
Обозначим через <i>d</i>(<i>n</i>) количество разбиений числа <i>n</i> на различные слагаемые, а через <i>l</i>(<i>n</i>) – на нечётные. Докажите равенства: а) <i>d</i>(0) + <i>d</i>(1)<i>x</i> + <i>d</i>(2)<i>x</i>² + ... = (1 + <i>x</i>)(1 + <i>x</i>²)(1 + <i>x</i>³)...; б) <i>l</i>(0) + <i>l</i>(1)<i>x</i> + <i>l</i>(2)<i>x</i>² + ... = (1 – <i>x</i>)<sup>–1</sup>(1 – <i>x</i>³)<sup>–1</sup>(1 – <i>x</i><sup>5</sup>)<sup>–1</sup>...; в) <i>d</i>(<i>n</i>)...
Докажите, что каждое натуральное число <i>n</i> может быть 2<sup><i>n</i>–1</sup> – 1 различными способами представлено в виде суммы <i>меньших</i> натуральных слагаемых, если два представления, отличающихся хотя бы порядком слагаемых, считать различными.
Пусть <i>p</i>(<i>n</i>) – количество разбиений числа <i>n</i> (определение разбиений смотри <a href="https://problems.ru/thes.php?letter=16#Razbienia">здесь</a>). Докажите равенства:
<div align="center"><i>p</i>(0) + <i>p</i>(1)<i>x</i> + <i>p</i>(2)<i>x</i> '' + ... = (1 + <i>x</i> + <i>x</i>² + ...)...(1 + <i>x<sup>k</sup></i> + <i>x</i><sup>2<i>k</i></sup> + ...)... = (1 – <i>x</i>)<sup>–1</sup>(1 – <i>x</i>²)<sup>–1</sup>(1 – <i>x</i>³)<sup>–1</sup>... </div> (По определению сч...
Вычислите: а) (1 +<i>x</i>)<sup>-1</sup>; б) (1 -<i>x</i>)<sup>-1</sup>; в) (1 -<i>x</i>)<sup>-2</sup>.
<b>Обращение степенного ряда.</b>Докажите, что если<i>a</i><sub>0</sub>$\ne$0, то для ряда<i>F</i>(<i>x</i>) существует ряд<i>F</i><sup>-1</sup>(<i>x</i>) =<i>b</i><sub>0</sub>+<i>b</i><sub>1</sub><i>x</i>+...+<i>b</i><sub>n</sub><i>x</i><sup>n</sup>+... такой, что<i>F</i>(<i>x</i>)<i>F</i><sup>-1</sup>(<i>x</i>) = 1.
Найдите произведения следующих формальных степенных рядов: <table> <tr><td align="LEFT">а) (1 + <i>x</i> + <i>x</i><sup>2</sup> + <i>x</i><sup>3</sup> +...)(1 - <i>x</i> + <i>x</i><sup>2</sup> - <i>x</i><sup>3</sup> +...);</td> </tr> <tr><td align="LEFT">б) (1 + <i>x</i> + <i>x</i><sup>2</sup> + <i>x</i><sup>3</sup> +...)<sup>2</sup>;</td> </tr> <tr><td align="LEFT"> в) $\left(\vphantom{1+x+\dfrac{x^2}{2!}+\ldots+\dfrac{x^n}{n!}+\ldots}\right.$1 + <i>x</i> + ${\dfrac{x^2}{2!}}$ +...+ ${\dfrac{x^...
<i>Определение.</i>Последовательность чисел<i>a</i><sub>0</sub>,<i>a</i><sub>1</sub>,...,<i>a</i><sub>n</sub>,..., которая удовлетворяет с заданными<i>p</i>и<i>q</i>соотношению<div><table cellpadding="0" width="100%" align="CENTER"> <tr valign="MIDDLE"><td align="CENTER"> <i>a</i><sub>n+2</sub>=<i>p</i><i>a</i><sub>n+1</sub>+<i>q</i><i>a</i><sub>n</sub> </td><td> (<i>n</i>=0,1,2,...)</td> <td nowrap width="10" align="RIGHT"> (11.2)</td></tr> </tab...
Пусть<i>f</i>(<i>x</i>,<i>y</i>) — гармоническая функция (определение смотри в задаче<a href="https://mirolimp.ru/tasks/161455">11.28</a>). Докажите, что функции$\Delta_{x}^{}$<i>f</i>(<i>x</i>,<i>y</i>) =<i>f</i>(<i>x</i>+ 1,<i>y</i>) -<i>f</i>(<i>x</i>,<i>y</i>) и$\Delta_{y}^{}$<i>f</i>(<i>x</i>,<i>y</i>) =<i>f</i>(<i>x</i>,<i>y</i>+ 1) -<i>f</i>(<i>x</i>,<i>y</i>) также будут гармоническими.
<i>Определение.</i>Пусть функция<i>f</i>(<i>x</i>,<i>y</i>) задана во всех точках плоскости с целыми координатами. Назовем функцию<i>f</i>(<i>x</i>,<i>y</i>)<i>гармонической</i>, если ее значение в каждой точке равно среднему арифметическому значений функции в четырех соседних точках, то есть: <i>f</i>(<i>x</i>,<i>y</i>)=1/4(<i>f</i>(<i>x</i>+1,<i>y</i>)+<i>f</i>(<i>x</i>-1,<i>y</i>)+<i>f</i>(<i>x</i>,<i>y</i>+1) +<i>f</i>(<i>x</i>,<i>y</i>-1)). Пусть<i>f</i>(<i>x</i>,<i>y</i>) и<...
Найдите последовательность {<i>a</i><sub>n</sub>} такую, что$\Delta$<i>a</i><sub>n</sub>=<i>n</i>2<sup>n</sup>. (Вспомните как вычисляют$\int$<i>xe</i><sup>x</sup> d<i>x</i>.)
Найдите представление для$\Delta$(<i>a</i><sub>n</sub><sup> . </sup><i>b</i><sub>n</sub>) через$\Delta$<i>a</i><sub>n</sub>и$\Delta$<i>b</i><sub>n</sub>. Сравните полученную формулу с формулой для производной произведения двух функций.
Докажите следующие свойства оператора взятия конечной разности, подобные свойствам оператора дифференцирования: а) $\Delta$${\dfrac{1}{b_n}}$= -${\dfrac{\Delta b_n}{b_nb_{n+1}}}$; б) $\Delta$$\left(\vphantom{\dfrac{a_n}{b_n}}\right.$${\dfrac{a_n}{b_n}}$$\left.\vphantom{\dfrac{a_n}{b_n}}\right)$=${\dfrac{b_n\Delta a_n-a_n\Delta b_n}{b_nb_{n+1}}}$.
Выведите формулу для суммы1<sup>3</sup>+ 2<sup>3</sup>+ 3<sup>3</sup>+...+<i>n</i><sup>3</sup>.
Найдите последовательность {<i>a</i><sub>n</sub>} такую, что$\Delta$<i>a</i><sub>n</sub>=<i>n</i><sup>2</sup>. Используя результат предыдущей задачи, получите формулу для суммы1<sup>2</sup>+ 2<sup>2</sup>+ 3<sup>2</sup>+...+<i>n</i><sup>2</sup>.
Пусть даны последовательности чисел {<i>a</i><sub>n</sub>} и {<i>b</i><sub>n</sub>}, связанные соотношением$\Delta$<i>b</i><sub>n</sub>=<i>a</i><sub>n</sub>, (<i>n</i>= 1, 2,...). Как связаны частичные суммы<i>S</i><sub>n</sub>последовательности {<i>a</i><sub>n</sub>}<div align="CENTER"> <i>S</i><sub>n</sub> = <i>a</i><sub>1</sub> + <i>a</i><sub>2</sub> +...+ <i>a</i><sub>n</sub> </div>с последовательностью {<i>b</i><sub>n</sub>}?
Найдите <table> <tr><td align="LEFT">а) $\Delta$<i>n</i><sup>2</sup>; </td> <td align="LEFT">в) $\Delta$<i>n</i><sup>k</sup>;</td> </tr> <tr><td align="LEFT">б) $\Delta$<i>n</i>(<i>n</i> - 1); </td> <td align="LEFT">д) $\Delta$<i>C</i><sub>n</sub><sup>k</sup>.</td> </tr> </table>