Олимпиадные задачи из источника «параграф 1. Конечные разности» для 1-8 класса

<b>Дискретная теорема Лиувилля.</b>Пусть<i>f</i>(<i>x</i>,<i>y</i>) — ограниченная гармоническая (определение смотри в задаче<a href="https://mirolimp.ru/tasks/161455">11.28</a>) функция, то есть существует положительная константа<i>M</i>такая, что<div align="CENTER"> $\displaystyle \forall$(<i>x</i>, <i>y</i>) $\displaystyle \in$ $\displaystyle \mathbb {Z}$<sup>2</sup>    | <i>f</i> (<i>x</i>, <i>y</i>)| $\displaystyle \leqslant$ <i>M</i>. </div>Докажите, что функция<i>f</i>(<i>x</i>,<i>y</i>) равна константе.

Пусть<i>f</i>(<i>x</i>,<i>y</i>) — гармоническая функция (определение смотри в задаче<a href="https://mirolimp.ru/tasks/161455">11.28</a>). Докажите, что функции$\Delta_{x}^{}$<i>f</i>(<i>x</i>,<i>y</i>) =<i>f</i>(<i>x</i>+ 1,<i>y</i>) -<i>f</i>(<i>x</i>,<i>y</i>) и$\Delta_{y}^{}$<i>f</i>(<i>x</i>,<i>y</i>) =<i>f</i>(<i>x</i>,<i>y</i>+ 1) -<i>f</i>(<i>x</i>,<i>y</i>) также будут гармоническими.

<i>Определение.</i>Пусть функция<i>f</i>(<i>x</i>,<i>y</i>) задана во всех точках плоскости с целыми координатами. Назовем функцию<i>f</i>(<i>x</i>,<i>y</i>)<i>гармонической</i>, если ее значение в каждой точке равно среднему арифметическому значений функции в четырех соседних точках, то есть: <i>f</i>(<i>x</i>,<i>y</i>)=1/4(<i>f</i>(<i>x</i>+1,<i>y</i>)+<i>f</i>(<i>x</i>-1,<i>y</i>)+<i>f</i>(<i>x</i>,<i>y</i>+1) +<i>f</i>(<i>x</i>,<i>y</i>-1)). Пусть<i>f</i>(<i>x</i>,<i>y</i>) и<...

Для каких натуральных<i>n</i>в выражении<div align="CENTER"> ±1<sup>2</sup>±2<sup>2</sup>±3<sup>2</sup>±...±<i>n</i><sup>2</sup> </div>можно так расставить знаки + и -, что в результате получится 0?

Докажите, что при всех натуральных <i>n</i> число   <i>f</i> (<i>n</i>) = 2<sup>2<i>n</i>–1</sup> – 9<i>n</i>² + 21<i>n</i> – 14   делится на 27.

Найдите : <table> <tr><td align="LEFT">а) $\sum\limits_{k=1}^{n}$${\dfrac{1}{k(k+1)}}$;    </td> <td align="LEFT">д) $\sum\limits_{k=1}^{n}$${\dfrac{4k+1}{k(k+1)(4k^2-1)}}$;</td> </tr> <tr><td align="LEFT">б) $\sum\limits_{k=2}^{n}$${\dfrac{1}{k^2-1}}$;    </td> <td align="LEFT">е) $\sum\limits_{k=1}^{n}$${\dfrac{k-1}{k!}}$;</td> </tr> <tr><td align="LEFT"> в) $\sum\limits_{k=1}^{n}$${\dfrac{1}{k(k+1)(k+2)}}$;    </td> <td align="LEFT"> ж) $\sum\limits_{k=1}^{n}$<i>k</i>! <i>k</i>.</td> </tr> <tr><td align="LEFT"> г) $\sum\limits_{k=1}^{n}$${\dfrac{(k-1),2^k}{k(k+1)}}$;&lt...

Найдите последовательность {<i>a</i><sub>n</sub>} такую, что$\Delta$<i>a</i><sub>n</sub>=<i>n</i>2<sup>n</sup>. (Вспомните как вычисляют$\int$<i>xe</i><sup>x</sup> d<i>x</i>.)

Найдите представление для$\Delta$(<i>a</i><sub>n</sub><sup> . </sup><i>b</i><sub>n</sub>) через$\Delta$<i>a</i><sub>n</sub>и$\Delta$<i>b</i><sub>n</sub>. Сравните полученную формулу с формулой для производной произведения двух функций.

Докажите следующие свойства оператора взятия конечной разности, подобные свойствам оператора дифференцирования: а) $\Delta$${\dfrac{1}{b_n}}$= -${\dfrac{\Delta b_n}{b_nb_{n+1}}}$;        б) $\Delta$$\left(\vphantom{\dfrac{a_n}{b_n}}\right.$${\dfrac{a_n}{b_n}}$$\left.\vphantom{\dfrac{a_n}{b_n}}\right)$=${\dfrac{b_n\Delta a_n-a_n\Delta b_n}{b_nb_{n+1}}}$.

Выведите формулу для суммы1<sup>3</sup>+ 2<sup>3</sup>+ 3<sup>3</sup>+...+<i>n</i><sup>3</sup>.

Найдите последовательность {<i>a</i><sub>n</sub>} такую, что$\Delta$<i>a</i><sub>n</sub>=<i>n</i><sup>2</sup>. Используя результат предыдущей задачи, получите формулу для суммы1<sup>2</sup>+ 2<sup>2</sup>+ 3<sup>2</sup>+...+<i>n</i><sup>2</sup>.

Пусть даны последовательности чисел {<i>a</i><sub>n</sub>} и {<i>b</i><sub>n</sub>}, связанные соотношением$\Delta$<i>b</i><sub>n</sub>=<i>a</i><sub>n</sub>,    (<i>n</i>= 1, 2,...). Как связаны частичные суммы<i>S</i><sub>n</sub>последовательности {<i>a</i><sub>n</sub>}<div align="CENTER"> <i>S</i><sub>n</sub> = <i>a</i><sub>1</sub> + <i>a</i><sub>2</sub> +...+ <i>a</i><sub>n</sub> </div>с последовательностью {<i>b</i><sub>n</sub>}?

Найдите <table> <tr><td align="LEFT">а) $\Delta$<i>n</i><sup>2</sup>;    </td> <td align="LEFT">в) $\Delta$<i>n</i><sup>k</sup>;</td> </tr> <tr><td align="LEFT">б) $\Delta$<i>n</i>(<i>n</i> - 1);    </td> <td align="LEFT">д) $\Delta$<i>C</i><sub>n</sub><sup>k</sup>.</td> </tr> </table>

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка