Олимпиадные задачи по теме «Математическая статистика» - сложность 2-4 с решениями
Математическая статистика
НазадГруппа психологов разработала тест, пройдя который, каждый человек получает оценку – число <i>Q</i> – показатель его умственных способностей (чем больше <i>Q</i>, тем больше способности). За <i>рейтинг</i> страны принимается среднее арифметическое значений <i>Q</i> всех жителей этой страны.
а) Группа граждан страны А эмигрировала в страну Б. Покажите, что при этом у обеих стран мог вырасти рейтинг.
б) После этого группа граждан страны Б (в числе которых могут быть и бывшие эмигранты из А) эмигрировала в страну А. Возможно ли, что рейтинги обеих стран опять выросли?
в) Группа граждан страны А эмигрировала в страну Б, а группа граждан Б – в страну В. В результате этого рейтинги каждой страны оказались выше первоначальных. После э...
Найдите медиану набора длин: 2 м 30 см, 250 мм, 0,02 км, 0,002 км, 2700 см, 2800 мм, 240 см.
Ваня написал на доске число 1, а затем ещё несколько чисел. Как только Ваня пишет очередное число, Митя вычисляет медиану уже имеющегося набора чисел и записывает его себе в тетрадку. В некоторый момент в Митиной тетради записаны числа: 1; 2; 3; 2,5; 3; 2,5; 2; 2; 2; 2,5.
а) Какое число записано на доске четвёртым? б) Какое число записано на доске восьмым?
В наборе –5, –4, –3, –2, –1, 0, 1, 2, 3, 4, 5 замените одно число двумя другими целыми числами так, чтобы дисперсия набора и его среднее не изменились.
Точку <i>O</i>, лежащую внутри треугольника <i>ABC</i>, соединили отрезками с вершинами треугольника. Докажите, что дисперсия набора углов <i>AOB, AOC</i> и <i>BOC</i> меньше чем
а) <sup>10π²</sup>/<sub>27</sub>;
б) <sup>2π²</sup>/<sub>9</sub>.
В числовом наборе <i>n</i> чисел, причём одно из чисел равно 0, а другое равно 1.
а) Какова наименьшая возможная дисперсия такого набора чисел?
б) Каким для этого должен быть набор?
В числовом наборе 100 чисел. Если выкинуть одно число, то медиана оставшихся чисел будет равна 78. Если выкинуть другое число, то медиана оставшихся чисел будет 66. Найдите медиану всего набора.
Дан числовой набор <i>x</i><sub>1</sub>, ..., <i>x<sub>n</sub></i>. Рассмотрим функцию <img align="absmiddle" src="/storage/problem-media/65303/problem_65303_img_2.png">.
а) Верно ли, что функция <i>d</i>(<i>t</i>) принимает наименьшее значение в единственной точке, каков бы ни был набор чисел <i>x</i><sub>1</sub>, ..., <i>x<sub>n</sub></i>?
б) Сравните значения <i>d</i>(<i>c</i>) и <i>d</i>(<i>m</i>), где <img align="absmiddle" src="/storage/problem-media/65303/problem_65303_img_3.png">, а <i>m</i> – медиана указанного набора.
Длина гипотенузы прямоугольного треугольника равна 3.
а) Рассеянный Учёный вычислил дисперсию длин сторон этого треугольника и нашёл, что она равняется 2. Не ошибся ли он в расчетах?
б) Какое наименьшее стандартное отклонение сторон может иметь такой прямоугольный треугольник? Какие у него при этом катеты?
Служить на подводной лодке может матрос, рост которого не превышает 168 см. Есть четыре команды А, Б, В и Г. Все матросы в этих командах хотят служить на подводной лодке и прошли строгий отбор. Остался последний отбор – по росту.
В команде А средний рост матросов равен 166 см.
В команде Б медиана роста матросов равна 167 см.
В команде В самый высокий матрос имеет рост 169 см.
В команде Г мода роста матросов равна 167 см.
В какой команде по крайней мере половина матросов точно может служить на подводной лодке?
Маркетинговая компания решила провести социологическое исследование, чтобы узнать, какая часть городского населения узнаёт новости в основном из радиопередач, какая часть – из телепрограмм, какая часть – из прессы, а какая – по интернету. Для исследования было решено использовать выборку из 2000 случайно выбранных владельцев адресов электронной почты. Можно ли считать такую выборку репрезентативной?
В первой четверти у Васи было пять оценок по математике, больше всего среди них пятёрок. При этом оказалось, что медиана всех оценок равна 4, а среднее арифметическое 3,8. Какие оценки могли быть у Васи?