Олимпиадные задачи по теме «Методы» для 10 класса - сложность 2 с решениями
Методы
Все категорииКуб с ребром <i>n</i> составлен из белых и чёрных кубиков с ребром 1 таким образом, что каждый белый кубик имеет общую грань ровно с тремя чёрными, а каждый чёрный – ровно с тремя белыми. При каких <i>n</i> это возможно?
Существуют ли такие 2013 различных натуральных чисел, что сумма каждых 2012 из них не меньше квадрата оставшегося?
Можно ли разбить клетчатую доску 12×12 на уголки из трёх соседних клеток так, чтобы каждый горизонтальный и каждый вертикальный ряд клеток доски пересекал одно и то же количество уголков? (Ряд пересекает уголок, если содержит хотя бы одну его клетку.)
При каких <i>n</i> можно оклеить в один слой поверхность клетчатого куба <i>n</i>×<i>n</i>×<i>n</i> бумажными прямоугольниками 1×2 так, чтобы каждый прямоугольник граничил по отрезкам сторон ровно с пятью другими?
Изобразите на координатной плоскости множество всех точек, координаты <i>x</i> и <i>у</i> которых удовлетворяют неравенству <img align="absmiddle" src="/storage/problem-media/116892/problem_116892_img_2.gif"> .
На шахматную доску поставлены 11 коней так, что никакие два не бьют друг друга.
Докажите, что на ту же доску можно поставить ещё одного коня с сохранением этого свойства.
Найдите наибольшее значение выражения <i>x</i>² + <i>y</i>², если |<i>x – y</i>| ≤ 2 и |3<i>x + y</i>| ≤ 6.
В десятичной записи некоторого числа цифры расположены слева направо в порядке убывания. Может ли это число быть кратным числу 111?
Туристическая фирма провела акцию: "Купи путевку в Египет, приведи четырёх друзей, которые также купят путевку, и получи стоимость путевки обратно". За время действия акции 13 покупателей пришли сами, остальных привели друзья. Некоторые из них привели ровно по четыре новых клиента, а остальные 100 не привели никого. Сколько туристов отправились в Страну Пирамид бесплатно?
Вася придумал новую шахматную фигуру "супер-слон". Один "супер-слон" (обозначим его <i>A</i>) бьёт другого (обозначим его <i>B</i>), если они стоят на одной диагонали, между ними нет фигур, и следующая по диагонали клетка за "супер-слоном" <i>B</i> свободна. Например, на рисунке фигура <i>a</i> бьёт фигуру <i>b</i>, но не бьёт ни одну из фигур <i>c, d, e, f</i> и <i>g</i>. <div align="center"><img src="/storage/problem-media/116871/problem_116871_img_2.gif"></div>Какое наибольшее количество "супер-слонов" можно поставить на шахматную доску так, чтобы каждый из них бился хотя бы одним другим?
Расставьте в кружках, расположенных в вершинах квадрата и в его центре, пять натуральных чисел так, чтобы каждые два числа, соединенные отрезком, имели общий делитель, больший 1, а любые два числа, не соединенные отрезком, были бы взаимно просты. <div align="center"><img src="/storage/problem-media/116868/problem_116868_img_2.gif"></div>
Верно ли, что в вершинах любого треугольника можно расставить положительные числа так, чтобы сумма чисел в концах каждой стороны треугольника равнялась длине этой стороны?
Говорящие весы произносят вес, округлив его до целого числа килограммов (по правилам округления: если дробная часть меньше 0,5, то число округляется вниз, а иначе – вверх; например, 3,5 округляется до 4). Вася утверждает, что, взвешиваясь на этих весах с одинаковыми бутылками, он получил такие ответы весов:<div align="center"><img src="/storage/problem-media/116812/problem_116812_img_2.gif"></div> Могло ли такое быть?
На поляне пасутся 150 коз. Поляна разделена изгородями на несколько участков. Ровно в полдень некоторые козы перепрыгнули на другие участки. Пастух подсчитал, что на каждом участке количество коз изменилось, причём ровно в семь раз. Не ошибся ли он?
Длина прямоугольного участка равна 4 метра, а ширина – 1 метр.
Можно ли посадить на нём три дерева так, чтобы расстояние между любыми двумя деревьями было не меньше чем 2,5 метра?
Может ли произведение трёх трёхзначных чисел, для записи которых использовано девять различных цифр, оканчиваться четырьмя нулями?
Существует ли трапеция, в которой каждая диагональ разбивает её на два равнобедренных треугольника?
Изначально на столе лежат 111 кусков пластилина одинаковой массы. За одну операцию можно выбрать несколько групп (возможно, одну) по одинаковому количеству кусков и в каждой группе весь пластилин слепить в один кусок. За какое наименьшее количество операций можно получить ровно 11 кусков, каждые два из которых имеют различные массы?
По кругу стоит 101 мудрец. Каждый из них либо считает, что Земля вращается вокруг Юпитера, либо считает, что Юпитер вращается вокруг Земли. Один раз в минуту все мудрецы одновременно оглашают свои мнения. Сразу после этого каждый мудрец, оба соседа которого думают иначе, чем он, меняет своё мнение, а остальные – не меняют. Докажите, что через некоторое время мнения перестанут меняться.
Пусть <i>a</i><sub>1</sub>, ..., <i>a</i><sub>11</sub> – различные натуральные числа, не меньшие 2, сумма которых равна 407.
Может ли сумма остатков от деления некоторого натурального числа <i>n</i> на 22 числа <i>a</i><sub>1</sub>, ..., <i>a</i><sub>11</sub>, 4<i>a</i><sub>1</sub>, 4<i>a</i><sub>2</sub>, ..., 4<i>a</i><sub>11</sub> равняться 2012?
На плоскости нарисовали кривые <i>y</i> = cos <i>x</i> и <i>x</i> = 100 cos(100<i>y</i>) и отметили все точки их пересечения, координаты которых положительны. Пусть <i>a</i> – сумма абсцисс, а <i>b</i> – сумма ординат этих точек. Найдите <sup><i>a</i></sup>/<sub><i>b</i></sub>.
Дана клетчатая полоска из 2<i>n</i> клеток, пронумерованных слева направо следующим образом:1, 2, 3, ..., <i>n</i>, –<i>n</i>, ..., –2, –1 По этой полоске перемещают фишку, каждым ходом сдвигая её на то число клеток, которое указано в текущей клетке (вправо, если число положительно, и влево, если отрицательно). Известно, что фишка, начав с любой клетки, обойдёт все клетки полоски. Докажите, что число 2<i>n</i> + 1 простое.
Из каждой вершины выпуклого многогранника выходят ровно три ребра, причём хотя бы два из этих трёх рёбер равны.
Докажите, что многогранник имеет хотя бы три равных ребра.
В ряд лежит чётное число груш. Массы любых двух соседних груш отличаются не более чем на 1 г. Докажите, что можно все груши разложить по две в одинаковые пакеты и выложить пакеты в ряд так, чтобы массы любых двух соседних пакетов тоже отличались не более чем на 1 г.
В стране Далёкой провинция называется <i>крупной</i>, если в ней живёт более 7% жителей этой страны. Известно, что для каждой крупной провинции найдутся такие две провинции с меньшим населением , что их суммарное население больше, чем у этой крупной провинции. Какое наименьшее число провинций может быть в стране Далёкой?