Олимпиадные задачи по теме «Примеры и контрпримеры. Конструкции» для 11 класса - сложность 3 с решениями

Существуют ли 2013 таких различных натуральных чисел, что сумма каждых двух из них делится на их разность?

Дана бесконечная последовательность чисел  <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, <i>a</i><sub>3</sub>, ...  Известно, что для любого номера <i>k</i> можно указать такое натуральное число <i>t</i>, что

<i>a<sub>k</sub> = a<sub>k+t</sub> = a</i><sub><i>k</i>+2<i>t</i></sub> = ...  Обязательно ли тогда эта последовательность периодическая, то есть существует ли такое натуральное <i>T</i>, что  <i>a<sub>k</sub> = a<sub>k+T</sub></i>  при любом натуральном <i>k</i>?

Пусть <i>C</i>(<i>n</i>) – количество различных простых делителей числа <i>n</i>.

  а) Конечно или бесконечно число таких пар натуральных чисел  (<i>a, b</i>),  что  <i>a ≠ b</i>  и  <i>C</i>(<i>a + b</i>) = <i>C</i>(<i>a</i>) + <i>C</i>(<i>b</i>)?

  б) А если при этом дополнительно требуется, чтобы  <i>C</i>(<i>a + b</i>) > 1000?

Докажите, что можно на каждом ребре произвольного тетраэдра записать по неотрицательному числу так, чтобы сумма чисел на сторонах каждой грани численно равнялась её площади.

Равнобедренный треугольник с углом 120° сложен ровно из трёх слоёв бумаги. Треугольник развернули – и получился прямоугольник. Нарисуйте такой прямоугольник и покажите пунктиром линии сгиба.

Существуют ли такие натуральные числа <i>a, b, c</i>, большие 10<sup>10</sup>, что их произведение делится на любое из них, увеличенное на 2012?

После обеда на <i>прозрачной</i> квадратной скатерти остались тёмные пятна общей площади <i>S</i>. Оказалось, что если сложить скатерть пополам вдоль любой из двух линий, соединяющих середины противоположных её сторон, или же вдоль одной из двух её диагоналей, то общая видимая площадь пятен будет равна <i>S</i><sub>1</sub>. Если же сложить скатерть пополам вдоль другой её диагонали, то общая видимая площадь пятен останется равна <i>S</i>. Какое наименьшее значение может принимать величина  <i>S</i><sub>1</sub> : <i>S</i>?

На собрание пришло <i>n</i> человек  (<i>n</i> > 1).  Оказалось, что у каждых двух из них среди собравшихся есть ровно двое общих знакомых.

  а) Докажите, что каждый из них знаком с одинаковым числом людей на этом собрании.

  б) Покажите, что <i>n</i> может быть больше 4.

Для натурального <i>a</i> обозначим через <i>P</i>(<i>a</i>) наибольший простой делитель числа  <i>a</i>² + 1.

Докажите, что существует бесконечно много таких троек различных натуральных чисел <i>a, b, c</i>, что  <i>P</i>(<i>a</i>) = <i>P</i>(<i>b</i>) = <i>P</i>(<i>c</i>).

Известно, что всякую треугольную пирамиду, противоположные рёбра которой попарно равны, можно так разрезать вдоль трёх её рёбер и развернуть, чтобы её развёрткой стал треугольник без внутренних разрезов (см. рис.). <div align="center"><img src="/storage/problem-media/116574/problem_116574_img_2.gif"></div>Найдётся ли еще какой-нибудь выпуклый многогранник, который можно так разрезать вдоль нескольких его рёбер и развернуть, чтобы его развёрткой стал треугольник без внутренних разрезов?

Вася нарисовал на плоскости несколько окружностей и провёл всевозможные общие касательные к каждой паре этих окружностей. Оказалось, что проведённые прямые содержат все стороны некоторого правильного 2011-угольника. Какое наименьшее количество окружностей мог нарисовать Вася?

  а) Три богатыря едут верхом по кольцевой дороге против часовой стрелки. Могут ли они ехать неограниченно долго с различными постоянными скоростями, если на дороге есть только одна точка, в которой богатыри имеют возможность обгонять друг друга?

  А если богатырей

  б) десять?

  в) тридцать три?

Можно ли, применяя к числу 1 функции sin, cos, tg, ctg, arcsin, arccos, arctg, arcctg в некотором порядке, получить число 2010? (Каждую функцию можно использовать сколько угодно раз.)

Из <i>N</i> прямоугольных плиток (возможно, неодинаковых) составлен прямоугольник с неравными сторонами. Докажите, что можно разрезать каждую плитку на две части так, чтобы из <i>N</i> частей можно было сложить квадрат, а из оставшихся <i>N</i> частей – прямоугольник.

Существует ли выпуклый <i>N</i>-угольник, все стороны которого равны, а все вершины лежат на параболе  <i>y = x</i>²,  если

  а)  <i>N</i> = 2011;

  б)  <i>N</i> = 2012?

На доске начерчен выпуклый четырёхугольник. Алёша утверждает, что его можно разрезать диагональю на два остроугольных треугольника. Боря – что можно на два прямоугольных, а Вася – что на два тупоугольных.

Оказалось, что ровно один из троих неправ. Про кого можно наверняка утверждать, что он прав?

Даны <i>N</i> синих и <i>N</i> красных палочек, причём сумма длин синих палочек равна сумме длин красных. Известно, что из синих палочек можно сложить <i>N</i>-угольник, и из красных – тоже. Всегда ли можно выбрать одну синюю и одну красную палочки и перекрасить их (синюю – в красный цвет, а красную – в синий) так, что снова из синих палочек можно будет сложить <i>N</i>-угольник, и из красных – тоже? Решите задачу

  а) для  <i>N</i> = 3;

  б) для произвольного натурального  <i>N</i> > 3.

От балки в форме треугольной призмы с двух сторон отпилили (плоской пилой) по куску. Спилы не задели ни оснований, ни друг друга.

  а) Могут ли спилы быть подобными, но не равными треугольниками?

  б) Может ли один спил быть равносторонним треугольником со стороной 1, а другой – равносторонним треугольником со стороной 2?

На новом сайте зарегистрировалось 2000 человек. Каждый пригласил к себе в друзья по 1000 человек. Два человека <i>объявляются</i> друзьями тогда и только тогда, когда каждый из них пригласил другого в друзья. Какое наименьшее количество пар друзей могло образоваться?

Есть два платка: один в форме квадрата, другой – в форме правильного треугольника, причём их периметры одинаковы.

Cуществует ли многогранник, который можно полностью оклеить этими двумя платками без наложений (платки можно сгибать, но нельзя резать)?

Два мага сражаются друг с другом. Вначале они оба парят над морем на высоте 100 метров. Маги по очереди применяют заклинания вида "уменьшить высоту парения над морем на <i>a</i> метров у себя и на <i>b</i> метров у соперника", где <i>a, b</i> – действительные числа,  0 < <i>a</i> < <i>b</i>.  Набор заклинаний у магов один и тот же, их можно использовать в любом порядке и неоднократно. Маг выигрывает дуэль, если после чьего-либо хода его высота над морем будет положительна, а у соперника – нет. Существует ли такой набор заклинаний, что второй маг может гарантированно выиграть (как бы ни действовал первый), если при этом число заклинаний в наборе

  а) конечно;  б) бесконечно?

В некой стране 100 городов (города считайте точками на плоскости). В справочнике для каждой пары городов имеется запись, каково расстояние между ними (всего 4950 записей).   а) Одна запись стёрлась. Всегда ли можно однозначно восстановить её по остальным?   б) Пусть стёрлись <i>k</i> записей, и известно, что в этой стране никакие три города не лежат на одной прямой. При каком наибольшем <i>k</i> всегда можно однозначно восстановить стёршиеся записи?

Полицейский участок расположен на прямой дороге, бесконечной в обе стороны. Некто угнал старую полицейскую машину, максимальная скорость которой составляет 90% от максимальной скорости новой машины. В некоторый момент в участке спохватились и послали вдогонку полицейского на новой полицейской машине. Однако вот беда: полицейский не знал, ни когда машина была угнана, ни в каком направлении вдоль дороги уехал угонщик. Сможет ли полицейский поймать угонщика?

Банкомат обменивает монеты: дублоны на пистоли и наоборот. Пистоль стоит <i>s</i> дублонов, а дублон – <sup>1</sup>/<i><sub>s</sub></i> пистолей, где <i>s</i> не обязательно целое. В банкомат можно вбросить любое число монет одного вида, после чего он выдаст в обмен монеты другого вида, округляя результат до ближайшего целого числа (если ближайших чисел два, выбирается большее).   а) Может ли так быть, что обменяв сколько-то дублонов на пистоли, а затем обменяв полученные пистоли на дублоны, мы получим больше дублонов, чем было вначале?   б) Если да, то может ли случиться, что полученное число дублонов ещё увеличится, если проделать с ними такую же операцию?

Многоугольник можно разрезать на две равные части тремя различными способами. Верно ли, что у него обязательно есть центр или ось симметрии?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка