Олимпиадные задачи по теме «Индукция» для 7 класса - сложность 2 с решениями
Индукция
НазадЛюбую ли сумму из целого числа рублей больше семи, можно уплатить без сдачи денежными купюрами по 3 и 5 рублей?
На доске написаны числа 1, 2, 3, …, 20. Разрешается стереть любые два числа<var>a</var>и<var>b</var>и заменить их суммой<var>ab</var>+<var>a</var>+<var>b</var>. Какое число может получиться после 19 таких операций?
2<i>m</i>-значное число назовём справедливым, если его чётные разряды содержат столько же чётных цифр, сколько и нечётные. Докажите, что в любом (2<i>m</i>+1)-значном числе можно вычеркнуть одну из цифр так, чтобы полученное 2<i>m</i>-значное число было справедливым. Пример для числа 12345 показан на рисунке. <div align="center"><img src="/storage/problem-media/73628/problem_73628_img_2.gif"></div>
Имеется кучка из 100 камней. Двое играют в следующую игру. Первый игрок забирает 1 камень, потом второй может забрать 1 или 2 камня, потом первый может забрать 1, 2 или 3 камня, затем второй 1, 2, 3 или 4 камня, и так далее. Выигрывает тот, кто забирает последний камень. Кто может выиграть, как бы ни играл соперник?
Вычислите произведение <img align="absmiddle" src="/storage/problem-media/60313/problem_60313_img_2.gif">
На столе стоят восемь стаканов с водой. Разрешается взять любые два стакана и уравнять в них количества воды, перелив часть воды из одного стакана в другой. Докажите, что с помощью таких операций можно добиться того, чтобы во всех стаканах было поровну воды.
n разбойников делят добычу. У каждого из них свое мнение о ценности той или иной доли добычи, и каждый из них хочет получить не меньше, чем 1/n долю добычи (со своей точки зрения). Придумайте, как разделить добычу между разбойниками.
При каких <i>n</i> > 3 набор гирь с массами 1, 2, 3, ..., <i>n</i> граммов можно разложить на три равные по массе кучки?
Доказать, что если несократимая рациональная дробь <sup><i>p</i></sup>/<sub><i>q</i></sub> является корнем многочлена <i>P</i>(<i>x</i>) с целыми коэффициентами, то <i>P</i>(<i>x</i>) = (<i>qx – p</i>)<i>Q</i>(<i>x</i>), где многочлен <i>Q</i>(<i>x</i>) также имеет целые коэффициенты.
В прямоугольнике 3×<i>n</i> стоят фишки трёх цветов, по <i>n</i> штук каждого цвета.
Доказать, что можно переставить фишки в каждой строке так, чтобы в каждом столбце были фишки всех цветов.
В выражении 123*...*9 звёздочки заменяют на минус или плюс.
a) Может ли получиться 0?
б) Может ли получиться 1?
в) Какие числа могут получиться?
Какое из чисел <img align="absMIDDLE" src="/storage/problem-media/30905/problem_30905_img_2.gif"> (10 двоек) или <img align="absMIDDLE" src="/storage/problem-media/30905/problem_30905_img_3.gif"> (9 троек) больше? А если троек не 9, а 8?
Докажите, что для любого натурального <i>n</i> выполняется неравенство 3<i><sup>n</sup> > n</i>·2<i><sup>n</sup></i>.
При каких натуральных <i>n</i> выполняется неравенство 2<i><sup>n</sup> ≥ n</i>³?
<i>x</i> ≥ –1, <i>n</i> – натуральное число. Докажите, что (1 + <i>x</i>)<sup><i>n</i></sup> ≥ 1 + <i>nx</i>.
Докажите, что существует граф с 2<i>n</i> вершинами, степени которых равны 1, 1, 2, 2, ..., <i>n, n</i>.