Олимпиадные задачи по теме «Комбинаторика» для 4-11 класса - сложность 1 с решениями
Доказать, что <img src="/storage/problem-media/109151/problem_109151_img_2.gif"> <div align="center"><img src="/storage/problem-media/109151/problem_109151_img_3.gif"></div>
В забеге от Воробьёвых гор до Красной площади приняли участие три спортсмена. Сначала стартовал Гриша, затем – Саша, и последней – Лена. После финиша выяснилось, что во время забега Гриша обгонял других 10 раз, Лена – 6 раз, Саша – 4 раза, причём все трое ни разу не оказывались в одной точке одновременно. В каком порядке финишировали спортсмены, если известно, что они пришли к финишу в разное время?
Сколькими способами можно разложить девять орехов по трём карманам? (Карманы разные, а орехи одинаковые.)
У людоеда в подвале томятся 25 пленников.
а) Сколькими способами он может выбрать трёх из них себе на завтрак, обед и ужин? Порядок важен.
б) А сколько есть способов выбрать троих, чтобы отпустить на свободу?
а) Сколькими способами Дима сможет покрасить пять ёлок в серебристый, зеленый и синий цвета, если количество краски у него неограничено, а каждую ёлку он красит только в один цвет?
б) У Димы есть пять шариков: красный, зеленый, желтый, синий и золотой. Сколькими способами он сможет украсить ими пять ёлок, если на каждую требуется надеть ровно один шарик?
в) А если можно надевать несколько шариков на одну ёлку (и все шарики должны быть использованы)?
На глобусе проведены 17 параллелей и 24 меридиана. На сколько частей разделена поверхность глобуса?
Каких прямоугольников с целыми сторонами больше: с периметром 1996 или с периметром 1998?
(Прямоугольники <i>a</i>×<i>b</i> и <i>b</i>×<i>a</i> считаются одинаковыми.)
Сколькими способами можно прочитать в таблице слово
а) КРОНА,
б) КОРЕНЬ,
начиная с буквы "K" и двигаясь вправо или вниз? <div align="center"><img src="/storage/problem-media/103809/problem_103809_img_2.gif"></div>
Каких пятизначных чисел больше: не делящихся на 5 или тех, у которых ни первая, ни вторая цифра слева – не пятёрка?
Пешеход обошёл шесть улиц одного города, пройдя каждую ровно два раза, но не смог обойти их, пройдя каждую лишь раз. Могло ли это быть?
– У меня зазвонил телефон.
– Кто говорит?
– Слон.
А потом позвонил Крокодил, а потом позвонили Зайчатки, а потом позвонили Мартышки, а потом позвонил Медведь, а потом позвонили Цапли... Итак, у Слона, Крокодила, Зайчаток, Мартышек, Медведя, Цапель и у меня установлены телефоны. Каждые два телефонных аппарата соединены проводом. Cколько для этого понадобилось проводов?
Сколькими способами можно расставить чёрную и белую ладьи на шахматной доске так, чтобы они не били друг друга?
В США дату принято записывать так: номер месяца, потом номер дня и год. В Европе же сначала идёт число, потом месяц и год. Сколько в году дней, дату которых нельзя прочитать однозначно, не зная, каким способом она написана?
10 друзей послали друг другу праздничные открытки, так что каждый послал пять открыток.
Докажите, что найдутся двое, которые послали открытки друг другу.
В сказочной стране Перра-Терра среди прочих обитателей проживают Карабасы и Барабасы. Каждый Карабас знаком с шестью Карабасами и девятью Барабасами. Каждый Барабас знаком с десятью Карабасами и семью Барабасами. Кого в этой стране больше – Карабасов или Барабасов?
В городе Васюки у всех семей были отдельные дома. В один прекрасный день каждая семья переехала в дом, который раньше занимала другая семья. В связи с этим было решено покрасить все дома в красный, синий или зелёный цвет, причём так, чтобы для каждой семьи цвет нового и старого домов не совпадал. Можно ли это сделать?
Сколько существует трехзначных чисел?
Какие восемь монет нужно взять, чтобы с их помощью можно было бы без сдачи заплатить любую сумму от 1 коп. до 1 руб.?
(В хождении были монеты в 1, 3, 5, 10, 20 и 50 коп.)
В обыкновенном наборе домино 28 косточек. Сколько косточек содержал бы набор домино, если бы значения, указанные на косточках, изменялись не от 0 до 6, а от 0 до 12?
Любую ли сумму из целого числа рублей, больше семи, можно уплатить без сдачи денежными купюрами по 3 и 5 руб.? Почему?
В турнире участвовали шесть шахматистов. Каждые два участника турнира сыграли между собой по одной партии. Сколько всего было сыграно партий? Сколько партий сыграл каждый участник? Сколько очков набрали шахматисты все вместе?
Внутренние покои дворца султана Ибрагима ибн-Саида состоят из 100 одинаковых квадратных комнат, расположенных в виде квадрата10×10 комнат. Если у двух комнат есть общая стена, то в ней обязательно есть ровно одна дверь. А если стена торцевая, то в ней обязательно есть ровно одно окно. Как сосчитать, сколько окон и дверей в покоях Ибрагима ибн-Саида?
Можно ли разложить 44 шарика на 9 кучек так, чтобы количество шариков в разных кучках было различным?
Назовём натуральное число "замечательным", если оно – самое маленькое среди всех натуральных чисел с такой же, как у него, суммой цифр.
Сколько существует трёхзначных замечательных чисел?
Для зашифровки телеграфных сообщений требуется разбить всевозможные десятизначные "слова" – наборы из десяти точек и тире – на две группы так, чтобы каждые два слова одной группы отличались не менее чем в трёх разрядах. Указать способ такого разбиения или доказать, что его не существует.