Олимпиадные задачи по теме «Классическая комбинаторика» для 7 класса - сложность 3 с решениями

Дана незамкнутая несамопересекающаяся ломаная из 37 звеньев. Через каждое звено провели прямую.

Какое наименьшее число различных прямых могло получиться?

Проведено три семейства параллельных прямых, по 10 прямых в каждом. Какое наибольшее число треугольников они могут вырезать из плоскости?

Правильный треугольник разбит на правильные треугольники со стороной 1 линиями, параллельными его сторонам и делящими каждую сторону на <i>n</i> частей (на рисунке  <i>n</i> = 5). <div align="center"><img src="/storage/problem-media/109703/problem_109703_img_2.gif"></div>Какое наибольшее число отрезков длины 1 с концами в вершинах этих треугольников можно отметить так, чтобы не нашлось треугольника, все стороны которого состоят из отмеченных отрезков?

На окружной железной дороге <i>n</i> станций. Иногда дежурные по станциям связываются друг с другом по радио. В каждый момент времени сеанс связи ведут только два человека. За сутки между каждыми двумя станциями произошёл ровно один радиосеанс. Для каждой станции (если учесть только её сеансы) оказалось, что она общалась с другими станциями по очереди в порядке их расположения на железной дороге (по или против часовой стрелки, у разных станций эти направления могут быть разными), начиная с одной из соседних и заканчивая другой. Чему может равняться <i>n</i>?

a) Восемь школьников решали восемь задач. Оказалось, что каждую задачу решили пять школьников. Докажите, что найдутся такие два школьника, что каждую задачу решил хотя бы один из них.

б) Если каждую задачу решили четыре ученика, то может оказаться, что таких двоих не найдётся.

За круглым столом были приготовлены 12 мест для жюри с указанием имени на каждом месте. Николай Николаевич, пришедший первым, по рассеянности сел не на своё, а на следующее по часовой стрелке место. Каждый член жюри, подходивший к столу после этого, занимал своё место или, если оно уже было занято, шёл вокруг стола по часовой стрелке и садился на первое свободное место. Возникшее расположение членов жюри зависит от того, в каком порядке они подходили к столу. Сколько может возникнуть различных способов рассадки жюри?

Квадрат разбит прямыми на 25 квадратиков-клеток. В некоторых клетках нарисована одна из диагоналей так, что никакие две диагонали не имеют общей точки (даже общего конца). Каково наибольшее возможное число нарисованных диагоналей?

На бесконечной шахматной доске расставлены пешки через три поля на четвёртое, так что они образуют квадратную сетку.

Докажите, что шахматный конь не может обойти все свободные поля, побывав на каждом поле по одному разу.

На всех клетках шахматной доски 8×8 расставлены натуральные числа. Разрешается выделить любой квадрат размером 3×3 или 4×4 и увеличить все числа в нём на 1. Мы хотим в результате нескольких таких операций добиться, чтобы числа во всех клетках делились на 10. Всегда ли это удастся сделать?

Пусть <i>K</i>(<i>x</i>) равно числу таких несократимых дробей <sup><i>a</i></sup>/<sub><i>b</i></sub>, что  <i>a < x</i>  и  <i>b < x</i>  (<i>a</i> и <i>b</i> – натуральные числа). Например,  <i>K</i>(<sup>5</sup>/<sub>2</sub>) = 3  (дроби 1, 2, ½).

Вычислить сумму  <i>K</i>(100) + <i>K</i>(<sup>100</sup>/<sub>2</sub>) + <i>K</i>(<sup>100</sup>/<sub>3</sub>) + ... + <i>K</i>(<sup>100</sup>/<sub>99</sub>) + <i>K</i>(<sup>100</sup>/<sub>100</sub>).

Стрелок стреляет по трём мишеням до тех пор, пока не собьёт все. Вероятность попадания при одном выстреле равна <i>p</i>.

  a) Найдите вероятность того, что потребуется ровно 5 выстрелов.

  б) Найдите математическое ожидание числа выстрелов.

В выпуклом шестиугольнике независимо друг от друга выбраны две случайные диагонали.

Найдите вероятность того, что эти диагонали пересекаются внутри шестиугольника (внутри – то есть не в вершине).

У Пети есть 12 одинаковых разноцветных вагончиков (некоторые, возможно, одного цвета, но неизвестно, сколько вагончиков какого цвета). Петя считает, что различных 12-вагонных поездов он сможет составить больше, чем 11-вагонных. Не ошибается ли Петя? (Поезда считаются одинаковыми, если в них на одних и тех же местах находятся вагончики одного и того же цвета.)

В шахматном турнире участвовали гроссмейстеры и мастера. По окончании турнира оказалось, что каждый участник набрал ровно половину своих очков в матчах с мастерами. Докажите, что количество участников турнира является квадратом целого числа. (Каждый участник сыграл с каждым по одной партии, победа – 1 очко, ничья – ½ очка, поражение – 0 очков.)

12 шахматистов сыграли турнир в один круг. Потом каждый из них написал 12 списков. В первом только он, в (<i>k</i>+1)-м – те, кто были в <i>k</i>-м и те, у кого они выиграли. Оказалось, что у каждого шахматиста 12-й список отличается от 11-го. Сколько было ничьих?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка