Олимпиадные задачи по теме «Геометрия» для 2-7 класса - сложность 1 с решениями

Разрежьте данную фигуру на три одинаковые части.<div align="center"><img src="/storage/problem-media/116863/problem_116863_img_2.gif"></div>

Одну сторону прямоугольника увеличили в 3 раза, а другую уменьшили в 2 раза и получили квадрат.

Чему равна сторона квадрата, если площадь прямоугольника 54 м²?

Можно ли сложить какой-нибудь квадрат из трёхклеточных уголков (см. рис.)?<div align="center"><img src="/storage/problem-media/116843/problem_116843_img_2.gif"></div>

У двух равнобедренных треугольников равны основания и радиусы описанных окружностей. Обязательно ли эти треугольники равны?

Из 16 спичек сложен ромб со стороной в две спички, разбитый на треугольники со стороной в одну спичку (см. рисунок). <div align="center"><img src="/storage/problem-media/116655/problem_116655_img_2.gif"></div>А сколько спичек потребуется, чтобы сложить ромб со стороной в 10 спичек, разбитый на такие же треугольники со стороной в одну спичку?

Покажите, как разрезать квадрат размером 5×5 клеток на "уголки" шириной в одну клетку так, чтобы все "уголки" состояли из разного количества клеток. (Длины "сторон" уголка могут быть как одинаковыми, так и различными.)

Торт упакован в коробку с квадратным основанием. Высота коробки вдвое меньше стороны этого квадрата. Ленточкой длины 156 см можно перевязать коробку и сделать бантик сверху (как на рисунке слева). А чтобы перевязать её с точно таким же бантиком сбоку (как на рисунке справа), нужна ленточка длины 178 см. Найдите размеры коробки. <div align="center"><img src="/storage/problem-media/116606/problem_116606_img_2.gif"></div>

Разрежьте рамку (см. рис.) на 16 равных частей. <div align="center"><img src="/storage/problem-media/116603/problem_116603_img_2.gif"></div>

В точке В живёт Винни-Пух, а в точках К, С, П и И – его друзья Кролик, Сова, Пятачок и ослик Иа-Иа (см. рисунок). <div align="center"><img src="/storage/problem-media/116471/problem_116471_img_2.gif"></div>Зимним утром Винни-Пух навестил их всех по одному разу, а потом вернулся домой. При этом он протоптал в снегу пять прямых тропинок от домика к домику, не пересекающих друг друга. Начертите как можно больше возможных маршрутов Винни-Пуха.

Разрежьте фигуру (см. рисунок) по линиям сетки на четыре равные фигуры. <div align="center"><img src="/storage/problem-media/116466/problem_116466_img_2.gif"></div>

Из прозрачной пленки вырезаны три квадрата с узорами, нарисованными на них чёрной краской (см. рисунок). <div align="center"><img src="/storage/problem-media/116461/problem_116461_img_2.gif"></div>Нарисуйте узор, который получится при наложении этих трёх квадратов друг на друга. (Поворачивать квадраты нельзя.)

Дан квадрат <i>ABCD</i>. На стороне <i>AD</i> внутрь квадрата построен равносторонний треугольник <i>ADE</i>. Диагональ <i>AC</i> пересекает сторону <i>ED</i> этого треугольника в точке <i>F</i>. Докажите, что  <i>CE = CF</i>.

В окружности провели диаметр <i>AB</i> и параллельную ему хорду <i>CD</i>, так, что расстояние между ними равно половине радиуса этой окружности (см. рис.). Найдите угол <i>CAB</i>.<div align="center"><img src="/storage/problem-media/116143/problem_116143_img_2.gif"></div>

Разрежьте квадрат 6×6 клеточек на трёхклеточные уголки (см. рис.) так, чтобы никакие два уголка не образовывали прямоугольник 2×3. <center> <img align="absmiddle" src="/storage/problem-media/116061/problem_116061_img_2.gif"> </center>

Прямоугольный лист бумаги согнули, совместив вершину с серединой противоположной короткой стороны (см. рис.). Оказалось, что треугольники I и II равны. Найдите длинную сторону прямоугольника, если короткая равна 8. <div align="center"><img src="/storage/problem-media/116057/problem_116057_img_2.gif"></div>

Ниже приведён фрагмент мозаики, которая состоит из ромбиков двух видов: "широких" и "узких" (см. рис.). <div align="center"><img src="/storage/problem-media/116054/problem_116054_img_2.gif"></div><div align="center"><img src="/storage/problem-media/116054/problem_116054_img_3.gif"></div>Нарисуйте, как по линиям мозаики вырезать фигуру, состоящую ровно из 3 "широких" и 8 "узких" ромбиков. (Фигура не должна распадаться на части.)

Дан равнобедренный треугольник <i>ABC</i> с основанием <i>AC</i>. Доказать, что конец <i>D</i> отрезка <i>BD</i>, выходящего из вершины <i>B</i>, параллельного основанию и равного боковой стороне треугольника, является центром вневписанной окружности треугольника.

Даны две окружности, касающиеся друг друга внутренним образом в точке <i>A</i>); из точки <i>B</i> большей окружности, диаметрально противоположной точке <i>A</i>, проведена касательная <i>BC</i> к меньшей окружности. Прямые <i>BC</i> и <i>AC</i> пересекает большую окружность в точках <i>D</i> и <i>E</i> соответственно. Докажите, что дуги <i>DE</i> и <i>BE</i> равны.

Пете и Коле выдали две одинаковые фигуры, вырезанные из клетчатой бумаги. Известно, что в каждой фигуре меньше, чем16клеток. Петя разрезал свою фигуру на части из четырех клеток (см. рисунок слева), а Коля разрезал свою фигуру на уголки из трех клеток (см. рисунок справа). Приведите пример фигуры, которую могли выдать мальчикам. Покажите, как эту фигуру разрезал на части Петя, и как ее разрезал Коля.

<center><i> <img align="absmiddle" src="/storage/problem-media/115487/problem_115487_img_2.gif"> </i></center>

Разрежьте данную фигуру (см. рисунок) на три равных фигуры. <center><i> <img align="absmiddle" src="/storage/problem-media/115474/problem_115474_img_2.gif"> </i></center>

Разрежьте фигуру, изображенную на рисунке, на две равные части. <center><i> <img align="absmiddle" src="/storage/problem-media/115469/problem_115469_img_2.gif"> </i></center>

Поросёнок Наф-Наф придумал, как сложить параллелепипед из одинаковых кубиков и оклеить его тремя квадратами без щелей и наложений. Сделайте это и вы.

Маша посмотрела на рисунок и сказала: "Здесь нарисовано семь прямоугольников: один большой и шесть маленьких". "Здесь есть еще различные средние прямоугольники" – сказала мама. Сколько же всего прямоугольников на этом рисунке? Ответ объясните. <img src="/storage/problem-media/111235/problem_111235_img_2.gif">

Разрежьте одну из фигур, приведенных на рисунке, на две части так, чтобы из них можно было сложить каждую из оставшихся. Нарисуйте, как вы разрезаете и как складываете.

<i> <img src="/storage/problem-media/111230/problem_111230_img_2.gif"> </i>

<i> <img src="/storage/problem-media/111230/problem_111230_img_3.gif"> </i>

<i> <img src="/storage/problem-media/111230/problem_111230_img_4.gif"> </i>

На прямой через равные промежутки поставили десять точек, и они заняли отрезок длины <i>a</i>. На другой прямой через такие же промежутки поставили 100 точек, и они заняли отрезок длины <i>b</i>. Во сколько раз <i>b</i> больше <i>a</i>?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка