Олимпиадные задачи по теме «Показательные функции и логарифмы» для 8 класса

Функция<i> f </i>такова, что для любых положительных<i> x </i>и<i> y </i>выполняется равенство<i> f</i>(<i>xy</i>)<i> = f</i>(<i>x</i>)<i> + f</i>(<i>y</i>). Найдите<i> f</i>(2007), если<i> f</i>(<i><img src="/storage/problem-media/109438/problem_109438_img_2.gif"></i>)<i> = </i>1.

Доказать, что если <center><i>

(x(y+z-x))/ x=(y(z+x-y))/ y=(z(x+y-z))/ z,

</i></center> то<i> x<sup>y</sup>y<sup>x</sup>=z<sup>y</sup>y<sup>z</sup>=x<sup>z</sup>z<sup>x</sup> </i>.

Расположите в порядке возрастания числа: 222<sup>2</sup>; 22<sup>22</sup>; 2<sup>222</sup>; 22<sup>2<sup>2</sup></sup>; 2<sup>22<sup>2</sup></sup>; 2<sup>2<sup>22</sup></sup>; 2<sup>2<sup>2<sup>2</sup></sup></sup>. Ответ обоснуйте.

Какое из двух чисел больше:   а)   <img src="/storage/problem-media/79303/problem_79303_img_2.gif">   (<i>n</i> двоек) или   <img src="/storage/problem-media/79303/problem_79303_img_3.gif"> (<i>n</i> − 1  тройка);   б)   <img src="/storage/problem-media/79303/problem_79303_img_3.gif">   (<i>n</i> троек) или   <img src="/storage/problem-media/79303/problem_79303_img_4.gif">   (<i>n</i> − 1  четвёрка).

Какое из двух чисел больше:   а)   <img src="/storage/problem-media/79299/problem_79299_img_2.gif">   (100 двоек) или   <img src="/storage/problem-media/79299/problem_79299_img_3.gif">   (99 троек);   б)   <img src="/storage/problem-media/79299/problem_79299_img_3.gif">   (100 троек) или   <img src="/storage/problem-media/79299/problem_79299_img_4.gif">   (99 четвёрок).

Дано 17 натуральных чисел: <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ..., <i>a</i><sub>17</sub>. Известно, что   <img align="absmiddle" src="/storage/problem-media/78804/problem_78804_img_2.gif">   Доказать, что  <i>a</i><sub>1</sub> = <i>a</i><sub>2</sub> = ... = <i>a</i><sub>17</sub>.

Какое из чисел больше: 31<sup>11</sup> или 17<sup>14</sup>?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка