Олимпиадные задачи по теме «Алгебра и арифметика (прочее)» для 4-9 класса

Существует ли такое положительное число $x > 1$, что $${x} > {x^2} > {x^3} > \ldots > {x^{100}}?$$ (Здесь ${x}$ — дробная часть числа $x$, то есть разность между $x$ и ближайшим целым числом, не превосходящим $x$.)

Даны $2N$ действительных чисел. Известно, что как ни разбей их на две группы по $N$ чисел, произведение чисел первой группы отличается от произведения чисел второй группы не более чем на $2$. Верно ли, что как ни расставь эти числа по кругу, найдутся два соседних числа, различающихся не более чем на $2$, если а) $N=50$; б) $N=25$?

По кругу стоят 50 чисел (необязательно целых). Известно, что произведение любых 25 чисел отличается от произведения 25 остальных не более чем на 2. Докажите, что какие-то два соседних числа отличаются не более чем на 2.

Для каждого из чисел 1, 19, 199, 1999 и т. д. изготовили одну отдельную карточку и записали на ней это число. а) Можно ли выбрать не менее трёх карточек так, чтобы сумма чисел на них равнялась числу, все цифры которого, кроме одной, – двойки?

б) Пусть выбрали несколько карточек так, что сумма чисел на них равна числу, все цифры которого, кроме одной, – двойки. Какой может быть его цифра, отличная от двойки?

Существует ли такое натуральное $n$, что для любых вещественных чисел $x$ и $y$ найдутся вещественные числа $a_1, \ldots, a_n$, удовлетворяющие равенствам $$x = a_1 + \ldots + a_n\quad \text{и} \quad y = \frac{1}{a_1}+ \ldots + \frac{1}{a_n}?$$

Каждый отрезок с концами в вершинах правильного 100-угольника покрасили – в красный цвет, если между его концами чётное число вершин, и в синий – в противном случае (в частности, все стороны 100-угольника красные). В вершинах расставили числа, сумма квадратов которых равна 1, а на отрезках – произведения чисел в концах. Затем из суммы чисел на красных отрезках вычли сумму чисел на синих. Какое наибольшее число могло получиться?

В ряд выписаны несколько натуральных чисел с суммой 20. Никакое число и никакая сумма нескольких подряд записанных чисел не равна 3. Могло ли быть выписано больше 10 чисел?

Каждый отрезок с концами в вершинах правильного 100-угольника покрасили – в красный цвет, если между его концами четное число вершин, и в синий – в противном случае (в частности, все стороны 100-угольника красные). В вершинах расставили числа, сумма квадратов которых равна 1, а на отрезках – произведения чисел в концах. Затем из суммы чисел на красных отрезках вычли сумму чисел на синих. Какое наибольшее число могло получиться?

Найдите значение выражения 1!*3-2!*4+3!*5-4!*6+...-2000!*2002+2001!.

Дано 100 положительных чисел, сумма которых равна S. Известно, что каждое из чисел меньше, чем S/99. Докажите, что сумма любых двух из этих чисел больше, чем S/99.

Существуют ли такие натуральные числа $m$ и $n$, что $m^2+n$ и $n^2+m$ одновременно являются квадратами?

Можно ли из последовательности 1, 1/2, 1/3, ... выбрать (сохраняя порядок) сто чисел, из которых каждое, начиная с третьего, равно разности двух предыдущих?

Даны 10 различных положительных чисел. В каком порядке их нужно обозначить a<sub>1</sub>, a<sub>2</sub>, ... , a<sub>10</sub>, чтобы сумма a<sub>1</sub>+2a<sub>2</sub>+3a<sub>3</sub>+...+10a<sub>10</sub>была наибольшей?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка