Олимпиадные задачи по математике для 11 класса - сложность 3 с решениями

На окружности отмечено 2<i>n</i> + 1  точек, делящих её на равные дуги  (<i>n</i> ≥ 2).  Двое по очереди стирают по одной точке. Если после хода игрока все треугольники с вершинами в ещё отмеченных точках – тупоугольные, он выигрывает, и игра заканчивается. Кто выиграет при правильной игре: начинающий игру или его противник?

Дана неравнобокая трапеция <i>ABCD</i>  (<i>AB || CD</i>).  Окружность, проходящая через точки <i>A</i> и <i>B</i>, пересекает боковые стороны трапеции в точках <i>P</i> и <i>Q</i>, а диагонали – в точках <i>M</i> и <i>N</i>. Докажите, что прямые <i>PQ, MN</i> и <i>CD</i> пересекаются в одной точке.

В остроугольном треугольнике $ABC$ отмечены точки $I$ и $O$ — центры вписанной и описанной окружностей соответственно. Прямые $AI$ и $CI$ вторично пересекают описанную окружность треугольника $ABC$ в точках $N$ и $M$. Отрезки $MN$ и $BO$ пересекаются в точке $X$. Докажите, что прямые $XI$ и $AC$ перпендикулярны.<img height="250" src="/storage/problem-media/67486/problem_67486_img_2.png">

На боковых сторонах $AB$ и $BC$ равнобедренного треугольника $ABC$ отмечены точки $D$ и $E$ так, что $\angle BED = 3\angle BDE$. Точка $D'$ симметрична точке $D$ относительно прямой $AC$. Докажите, что прямая $D'E$ проходит через точку пересечения биссектрис треугольника $ABC$.

На плоскости проведены три прямые, образующие остроугольный неравнобедренный треугольник. Федя, у которого есть циркуль и линейка, хочет провести все высоты этого треугольника. Ваня с ластиком пытается ему помешать. За ход Федя проводит либо прямую через две отмеченные точки, либо окружность с центром в отмеченной точке, проходящую через другую отмеченную точку. После этого Федя отмечает любое количество точек (точки пересечения проведенных линий, случайные точки на проведенных линиях и случайные точки плоскости). Ваня за ход стирает не более трех отмеченных точек. (Федя не может использовать стертые точки в своих построениях, пока не отметит их снова). Ходят по очереди, начинает Федя. Изначально никакие точки плоскости не отмечены. Может ли Федя провести высоты?

В отель ночью приехали $100$ туристов. Они знают, что в отеле есть одноместные номера $1$, $2, \ldots, n$, из которых $k$ на ремонте (но неизвестно какие), а остальные свободны. Туристы могут заранее договориться о своих действиях, после чего по очереди уходят заселяться: каждый проверяет номера в любом порядке, находит первый свободный номер не на ремонте и остаётся там ночевать. Но туристы не хотят беспокоить друг друга: нельзя проверять номер, куда уже кто-то заселился. Для каждого $k$ укажите наименьшее $n$, при котором туристы гарантированно смогут заселиться, не потревожив друг друга.

Барон Мюнхгаузен придумал теорему: если многочлен $x^n - a x^{n-1} + bx^{n-2} + \ldots $ имеет $n$ натуральных корней, то на плоскости найдутся $a$ прямых, у которых ровно $b$ точек пересечения друг с другом. Не ошибается ли барон?

Дан описанный четырёхугольник $ABCD$. Докажите, что точка пересечения диагоналей, центр вписанной окружности треугольника $ABC$ и центр вневписанной окружности треугольника $CDA$, касающейся стороны $AC$ лежат на одной прямой.

Дан треугольник $ABC$. Пусть $I$ – центр вневписанной окружности, касающейся стороны $AB$, а $A_1$ и $B_1$ – точки касания двух других вневписанных окружностей со сторонами $BC$ и $AC$ соответственно. Пусть $M$ – середина отрезка $IC$, а отрезки $AA_1$ и $BB_1$ пересекаются в точке $N$. Докажите, что точки $N$, $B_1$, $A$ и $M$ лежат на одной окружности.

Пусть <i>AL</i> и <i>AK</i> – внутренняя и внешняя биссектрисы треугольника <i>ABC,  P</i> – точка пересечения касательных к описанной окружности в точках <i>B</i> и <i>C</i>. Перпендикуляр, восставленный из точки <i>L</i> к <i>BC</i>, пересекает прямую <i>AP</i> в точке <i>Q</i>. Докажите, что <i>Q</i> лежит на средней линии треугольника <i>LKP</i>.

Дан тетраэдр, в который можно вписать сферу, касающуюся всех его рёбер. Пусть отрезки касательных из вершин равны <i>a, b, c</i> и <i>d</i>. Всегда ли можно из этих четырёх отрезков сложить какой-нибудь треугольник? (Не обязательно использовать все отрезки. Разрешается образовывать сторону треугольника из двух отрезков.)

На основании <i>AC</i> равнобедренного треугольника <i>ABC</i> взяли произвольную точку <i>X</i>, а на боковых сторонах – точки <i>P</i> и <i>Q</i> так, что <i>XPBQ</i> – параллелограмм. Докажите, что точка <i>Y</i>, симметричная точке <i>X</i> относительно <i>PQ</i>, лежит на описанной окружности треугольника <i>ABC</i>.

Точка <i>M</i> – середина стороны <i>AC</i> треугольника <i>ABC</i>. На отрезках <i>AM</i> и <i>CM</i> выбраны точки <i>P</i> и <i>Q</i> соответственно таким образом, что  <i>PQ = <sup>AC</sup></i>/<sub>2</sub>.  Описанная окружность треугольника <i>ABQ</i> второй раз пересекает сторону <i>BC</i> в точке <i>X</i>, а описанная окружность треугольника <i>BCP</i>, второй раз пересекает сторону <i>AB</i> в точке <i>Y</i>. Докажите, что четырёхугольник <i>BXMY</i> – вписанный.

В остроугольном треугольнике <i>ABC</i> проведены высоты <i>AP</i> и <i>BQ</i>, а также медиана <i>CM</i>. Точка <i>R</i> – середина <i>CM</i>. Прямая <i>PQ</i> пересекает прямую <i>AB</i> в точке <i>T</i>. Докажите, что  <i>OR</i>⊥<i>TC</i>,  где <i>O</i> – центр описанной окружности треугольника <i>ABC</i>.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка