Олимпиадные задачи по математике для 3-6 класса
Из квадратного листа бумаги сложили треугольник (см. рисунки). Найдите отмеченный угол. <div align="center"><img src="/storage/problem-media/117002/problem_117002_img_2.gif"></div>
Астролог считает, что 2013 год <i>счастливый</i>, потому что 2013 нацело делится на сумму 20 + 13.
Будет ли когда-нибудь два счастливых года подряд?
Тридцать три богатыря нанялись охранять Лукоморье за 240 монет. Хитрый дядька Черномор может разделить богатырей на отряды произвольной численности (или записать всех в один отряд), а затем распределить всё жалованье между отрядами. Каждый отряд делит свои монеты поровну, а остаток отдаёт Черномору. Какое наибольшее количество монет может достаться Черномору, если:
а) жалованье между отрядами Черномор распределяет как ему угодно;
б) жалованье между отрядами Черномор распределяет поровну?
13 детей сели за круглый стол и договорились, что мальчики будут врать девочкам, а друг другу говорить правду, а девочки, наоборот, будут врать мальчикам, а друг другу говорить правду. Один из детей сказал своему правому соседу: "Большинство из нас мальчики". Тот сказал своему правому соседу: "Большинство из нас девочки", а он своему соседу справа: "Большинство из нас мальчики", а тот своему: "Большинство из нас девочки" и так далее, пока последний ребёнок не сказал первому: "Большинство из нас мальчики". Сколько мальчиков было за столом?
Известно, что Шакал всегда лжёт, Лев говорит правду, Попугай просто повторяет последний услышанный ответ (а если его спросить первым, ответит как попало), а Жираф дает честный ответ, но на предыдущий заданный ему вопрос (а на первый вопрос отвечает как попало). Мудрый Ёжик в тумане наткнулся на Шакала, Льва, Попугая и Жирафа и решил выяснить, в каком порядке они стоят. Спросив всех по очереди "Ты Шакал?", он понял только лишь, где Жираф. Спросив всех в том же порядке: "Ты Жираф?", он смог ещё понять, где Шакал, но полной ясности так и не наступило. И лишь после того как на вопрос "Ты Попугай?" первый ответил "Да", Ежу, наконец, стало ясно, в каком порядке стояли животные. Так в каком же?
("Как попало" означает, что один из ответов "Д...
КУБ является кубом. Докажите, что ШАР кубом не является. (КУБ и ШАР — трёхзначные числа, разные буквы обозначают различные цифры.)
Петя и Вася живут в соседних домах (см. план на рисунке). Вася живет в четвёртом подъезде. Известно, что Пете, чтобы добежать до Васи кратчайшим путем (не обязательно идущим по сторонам клеток), безразлично, с какой стороны обегать свой дом. Определите, в каком подъезде живет Петя. <div align="center"><img align="absmiddle" src="/storage/problem-media/111899/problem_111899_img_2.gif"> </div>
<center><i> <img src="/storage/problem-media/111320/problem_111320_img_2.gif"> </i></center> Автостоянка в Цветочном городе представляет собой квадрат7<i>x </i>7клеточек, в каждой из которых можно поставить машину. Стоянка обнесена забором, одна из сторон угловой клетки удалена (это ворота). Машина ездит по дорожке шириной в клетку. Незнайку попросили разместить как можно больше машин на стоянке таким образом, чтобы любая могла выехать, когда прочие стоят. Незнайка расставил 24 машины так, как показано на рис.. Попытайтесь расставить машины по-другому, чтобы их поместилось больше.
На клетчатой бумаге нарисован прямоугольник шириной 200 и высотой 100 клеток. Его закрашивают по клеткам, начав с левой верхней и идя по спирали (дойдя до края или уже закрашенной части, поворачивают направо, см. рис.). Какая клетка будет закрашена последней? (Укажите номер её строки и столбца. Например, нижняя правая клетка стоит в 100-й строке и 200-м столбце.) <div align="center"><img src="/storage/problem-media/105096/problem_105096_img_2.png"></div>
Сложите из фигур, изображённых на рисунке, квадрат размером 9×9 с вырезанным в его центре квадратом 3×3. (Фигуры можно не только поворачивать, но и переворачивать.)
<img src="/storage/problem-media/103902/problem_103902_img_2.gif">
Сложите из фигур, изображённых на рисунке, а) квадрат размером 9×9 с вырезанным в его центре квадратом 3×3; б) прямоугольник размером 9×12. (Фигуры можно не только поворачивать, но и переворачивать.)
<img src="/storage/problem-media/103896/problem_103896_img_2.gif">
Килограмм говядины с костями стоит 78 рублей, килограмм говядины без костей — 90 рублей, а килограмм костей — 15 рублей. Сколько граммов костей в килограмме говядины?
Найдите наименьшее четырёхзначное число<tt>СЕЕМ</tt>, для которого существует решение ребусаМЫ + РОЖЬ = СЕЕМ. (Одинаковым буквам соответствуют одинаковые цифры, разным — разные.)
Решите ребус: БАО×БА×Б = 2002.
На клетчатой бумаге был нарисован лабиринт: квадрат 5×5 (внешняя стена) с выходом шириной в одну клетку, а также внутренние стенки, идущие по линиям сетки. На рисунке мы скрыли от вас все внутренние стенки. Начертите, как они могли располагаться, зная, что числа, стоящие в клетках, показывают наименьшее количество шагов, за которое можно было покинуть лабиринт, стартовав из этой клетки (шаг делается в соседнюю по стороне клетку, если они не разделены стенкой). Достаточно одного примера, пояснения не нужны. <img align="center" src="/storage/problem-media/66520/problem_66520_img_2.png">
Автобусная остановка B расположена на прямолинейном шоссе между остановками <i>A</i> и <i>C</i>. Через некоторое время после выезда из <i>A</i> автобус оказался в такой точке шоссе, что расстояние от неё до одной из трёх остановок равно сумме расстояний до двух других. Ещё через такое же время автобус снова оказался в точке с таким свойством, а ещё через 25 минут доехал до <i>B</i>. Сколько времени требуется автобусу на весь путь от <i>A</i> до <i>C</i>, если его скорость постоянна, а на остановке <i>B</i> он стоит 5 минут?
Робот придумал шифр для записи слов: заменил некоторые буквы алфавита однозначными или двузначными числами, используя только цифры 1, 2 и 3 (разные буквы он заменял разными числами). Сначала он записал шифром сам себя: РОБОТ = 3112131233. Зашифровав слова КРОКОДИЛ и БЕГЕМОТ, он с удивлением заметил, что числа вышли совершенно одинаковыми! Потом Робот записал слово МАТЕМАТИКА. Напишите число, которое у него получилось.
Разрежьте фигуру на рисунке на три равные части (не обязательно по линиям сетки). (Равными называются части, которые можно совместить, наложив друг на друга. При этом части можно поворачивать и переворачивать.)<div align="center"><img align="middle" src="/storage/problem-media/65438/problem_65438_img_2.gif"></div>
Замените в слове МАТЕМАТИКА буквы цифрами и знаками сложения и вычитания так, чтобы получилось числовое выражение, равное 2014.
(Одинаковыми буквами обозначены одинаковые цифры или знаки, разными – разные. Достаточно привести пример.)
Мама испекла пирожки – три с рисом, три с капустой и один с вишней – и выложила их на блюдо по кругу (см. рис.). Потом поставила блюдо в микроволновку подогреть. На вид все пирожки одинаковые. Маша знает, как они лежали, но не знает, как повернулось блюдо. Она хочет съесть пирожок с вишней, а остальные считает невкусными. Как Маше наверняка добиться этого, надкусив как можно меньше невкусных пирожков?<div align="center"><img src="/storage/problem-media/64573/problem_64573_img_2.gif"></div>
Квадрат разрезали на двенадцать прямоугольных треугольников.
Могут ли десять из них оказаться равными друг другу, а два оставшихся – отличаться и от них, и друг от друга?