Олимпиадные задачи по математике для 10 класса

В стране несколько городов, соединённых дорогами с односторонним и двусторонним движением. Известно, что из каждого города в любой другой можно проехать ровно одним путём, не проходящим два раза через один и тот же город. Докажите, что страну можно разделить на три губернии так, чтобы ни одна дорога не соединяла два города из одной губернии.

Докажите, что на графике функции  <i>y = x</i>³ можно отметить такую точку <i>A</i>, а на графике функции  <i>y = x</i>³ + |<i>x</i>| + 1  – такую точку <i>B</i>, что расстояние <i>AB</i> не превышает <sup>1</sup>/<sub>100</sub>.

Система укреплений состоит из блиндажей. Некоторые из блиндажей соединены траншеями, причём из каждого блиндажа можно перебежать в какой-нибудь другой. В одном из блиндажей спрятался пехотинец. Пушка может одним выстрелом накрыть любой блиндаж. В каждом промежутке между выстрелами пехотинец обязательно перебегает по одной из траншей в соседний блиндаж (даже если по соседнему блиндажу только что стреляла пушка, пехотинец может туда перебежать). Назовём систему <i>надёжной</i>, если у пушки нет гарантированной стратегии поражения пехотинца (то есть такой последовательности выстрелов, благодаря которой пушка поразит пехотинца независимо от его начального местонахождения и последующих передвижений). <div align="center"><img src="/storage/problem-media/1050...

Существуют ли такие иррациональные числа <i>a</i> и <i>b</i>, что  <i>a </i> > 1,  <i>b</i> > 1,  и  [<i>a<sup>m</sup></i>]  отлично от  [<i>b<sup>n</sup></i>]  при любых натуральных числах <i>m</i> и <i>n</i>?

Верно ли, что на графике функции  <i>y = x</i>³  можно отметить такую точку <i>A</i>, а на графике функции  <i>y = x</i>³ + |<i>x</i>| + 1  – такую точку <i>B</i>, что расстояние <i>AB</i> не превысит <sup>1</sup>/<sub>100</sub>?

Натуральные числа <i>a, b, c, d</i> таковы, что <i>ad – bc</i> > 1.  Докажите, что хотя бы одно из чисел <i>a, b, c, d</i> не делится на  <i>ad – bc</i>.

Дан куб с ребром длины <i>n</i> см. В нашем распоряжении имеется длинный кусок изоляционной ленты шириной 1 см. Требуется обклеить куб лентой, при этом лента может свободно переходить через ребро на другую грань, по грани она должна идти по прямой параллельно ребру и не свисать с грани вбок. На сколько кусков необходимо разрезать ленту, чтобы обклеить куб?

Куб размером10×10×10 сложен из 500 чёрных и 500 белых кубиков в шахматном порядке (кубики, примыкающие друг к другу гранями, имеют различные цвета). Из этого куба вынули 100 кубиков так, чтобы в каждом из 300 рядов размером1×1×10, параллельных какому-нибудь ребру куба, не хватало ровно одного кубика. Докажите, что число вынутых чёрных кубиков делится на 4.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка