Олимпиадные задачи по математике - сложность 2 с решениями

Даны 11 гирь разного веса (одинаковых нет), каждая весит целое число граммов. Известно, что как ни разложить гири (все или часть) на две чаши, чтобы гирь на них было не поровну, всегда перевесит чаша, на которой гирь больше. Докажите, что хотя бы одна из гирь весит более 35 граммов.

На окружности расставлены 999 чисел, каждое равно 1 или –1, причём не все числа одинаковые. Возьмём все произведения по 10 подряд стоящих чисел и сложим их.

  а) Какая наименьшая сумма может получиться?

  б) А какая наибольшая?

В выпуклом четырёхугольнике <i>ABCD</i> стороны равны соответственно:   <i>AB</i> = 10,  <i>BC</i> = 14,  <i>CD</i> = 11,  <i>AD</i> = 5.   Найдите угол между его диагоналями.

У барона Мюнхгаузена есть 50 гирь. Веса этих гирь – различные натуральные числа, не превосходящие 100, а суммарный вес гирь – чётное число. Барон утверждает, что нельзя часть этих гирь положить на одну чашу весов, а остальные – на другую чашу так, чтобы весы оказались в равновесии. Могут ли эти слова барона быть правдой?

Фокусник с завязанными глазами выдаёт зрителю пять карточек с номерами от 1 до 5. Зритель прячет две карточки, а три отдаёт ассистенту фокусника. Ассистент указывает зрителю на две из них, и зритель называет номера этих карточек фокуснику (в том порядке, в каком захочет). После этого фокусник угадывает номера карточек, спрятанных у зрителя. Как фокуснику и ассистенту договориться, чтобы фокус всегда удавался?

Фокусник с завязанными глазами выдаёт зрителю 29 карточек с номерами от 1 до 29. Зритель прячет две карточки, а остальные отдаёт ассистенту фокусника. Ассистент указывает зрителю на две из них, и зритель называет номера этих карточек фокуснику (в том порядке, в каком захочет). После этого фокусник угадывает номера карточек, спрятанных у зрителя. Как фокуснику и ассистенту договориться, чтобы фокус всегда удавался?

Дана прямая и две точки <i>A</i> и <i>B</i>, лежащие по одну сторону от этой прямой на равном расстоянии от неё.

Как с помощью циркуля и линейки найти на прямой такую точку <i>C</i>, что произведение  <i>AC</i>·<i>BC</i>  будет наименьшим?

Учитель продиктовал классу задание, которое каждый ученик выполнил в своей тетради. Вот это задание:   Нарисуйте две концентрические окружности радиусов 1 и 10. К малой окружности проведите три касательные так, чтобы их точки пересечения <i>A, B</i> и <i>C</i> лежали внутри большой окружности. Измерьте площадь <i>S</i> треугольника <i>ABC</i> и площади <i>S<sub>A</sub></i>, <i>S<sub>B</sub></i> и <i>S<sub>C</sub></i> трёх образовавшихся криволинейных треугольников с вершинами в точках <i>A, B</i> и <i>C</i>. Найдите  <i>S<sub>A</sub> + S<sub>B</sub> + S<sub>C</sub> – S</i>. Докажите, что у всех ученик...

В выпуклом семиугольнике <i>A</i><sub>1</sub><i>A</i><sub>2</sub><i>A</i><sub>3</sub><i>A</i><sub>4</sub><i>A</i><sub>5</sub><i>A</i><sub>6</sub><i>A</i><sub>7</sub> диагонали <i>A</i><sub>1</sub><i>A</i><sub>3</sub>, <i>A</i><sub>2</sub><i>A</i><sub>4</sub>, <i>A</i><sub>3</sub><i>A</i><sub>5</sub>, <i>A</i><sub>4</sub><i>A</i><sub>6</sub>, <i>A</i><sub>5</sub><i>A</i><sub>7</sub>, <i&...

Дана трапеция <i>ABCD</i>, <i>M</i> – точка пересечения её диагоналей. Известно, что боковая сторона <i>AB</i> перпендикулярна основаниям <i>AD</i> и <i> BC</i> и что в трапецию можно вписать окружность. Найдите площадь треугольника <i> DCM</i>, если радиус этой окружности равен <i>r</i>.

В треугольнике одна сторона в три раза меньше суммы двух других. Докажите, что против этой стороны лежит наименьший угол треугольника.

Петин счет в банке содержит 500 долларов. Банк разрешает совершать операции только двух видов: снимать 300 долларов или добавлять 198 долларов.

Какую максимальную сумму Петя может снять со счета, если других денег у него нет?

Существует ли такая бесконечная последовательность, состоящая из

  а) действительных

  б) целых

чисел, что сумма любых десяти подряд идущих чисел положительна, а сумма любых первых подряд идущих  10<i>n</i> + 1  чисел отрицательна при любом натуральном <i>n</i>?

а) К любому ли шестизначному числу, начинающемуся с цифры 5, можно приписать еще 6 цифр так, чтобы полученное 12-значное число было полным квадратом?

б) Тот же вопрос про число, начинающееся с 1.

в) Найдите для каждого <i>n</i> такое наименьшее  <i>k = k</i>(<i>n</i>),  что к каждому <i>n</i>-значному числу можно приписать еще <i>k</i> цифр так, чтобы полученное (<i>n+k</i>)-значное число было полным квадратом.

Шестизначное число начинается с цифры 5. Верно ли, что к нему всегда можно приписать справа шесть цифр так, чтобы получился полный квадрат?

10 фишек стоят на столе по кругу. Сверху фишки красные, снизу – синие. Разрешены две операции:

  а) перевернуть четыре фишки, стоящие подряд;

&nbsp б) перевернуть четыре фишки, расположенные так:  ××0××  (× – фишка, входящая в четвёрку, 0 – не входящая).

Удастся ли, используя несколько раз разрешённые операции, перевернуть все фишки синей стороной вверх?

По окружности выписано 10 чисел, их сумма равна 100. Известно, что сумма каждой тройки чисел, стоящих подряд, не меньше 29.

Укажите такое наименьшее число <i>A</i>, что в любом таком наборе чисел каждое из чисел не превышает <i>A</i>.

Окружность разбита на семь дуг так, что сумма каждых двух соседних дуг не превышает 103°.

Назовите такое наибольшее число <i>A</i>, что при любом таком разбиении каждая из семи дуг содержит не меньше <i>A</i>°.

В лес за грибами пошли 11 девочек и <i>n</i> мальчиков. Вместе они собрали  <i>n</i>² + 9<i>n</i> – 2  гриба, причём все они собрали поровну грибов.

Кого было больше: мальчиков или девочек?

В некотором королевстве было 32 рыцаря. Некоторые из них были вассалами других (вассал может иметь только одного сюзерена, причём сюзерен всегда богаче своего вассала). Рыцарь, имевший не менее четырёх вассалов, носил титул барона. Какое наибольшее число баронов могло быть при этих условиях?

(В королевстве действовал закон: "вассал моего вассала – не мой вассал".)

На шахматной доске 4×4 расположена фигура – "летучая ладья", которая ходит так же, как обычная ладья, но не может за один ход стать на поле, соседнее с предыдущим. Может ли она за 16 ходов обойти всю доску, становясь на каждое поле по разу, и вернуться на исходное поле?

Рассмотрим все натуральные числа, в десятичной записи которых участвуют лишь цифры 1 и 0. Разбейте эти числа на два непересекающихся подмножества так, чтобы сумма любых двух различных чисел из одного и того же подмножества содержала в своей десятичной записи не менее двух единиц.

Существует ли такое положительное число $x > 1$, что $${x} > {x^2} > {x^3} > \ldots > {x^{100}}?$$ (Здесь ${x}$ — дробная часть числа $x$, то есть разность между $x$ и ближайшим целым числом, не превосходящим $x$.)

Учитель назвал две различные ненулевые цифры. Коля хочет составить делящееся на $7$ семизначное число, в десятичной записи которого нет других цифр, кроме этих двух. Всегда ли Коля может это сделать, какие бы две цифры ни назвал учитель?

На асфальте нарисована полоса $1\times10$ для игры в «классики». Из центра первого квадрата надо сделать 9 прыжков по центрам квадратов (иногда вперёд, иногда назад) так, чтобы побывать в каждом квадрате по одному разу и закончить маршрут в последнем квадрате. Аня и Варя обе прошли полосу, и каждый очередной прыжок Ани был на то же расстояние, что и очередной прыжок Вари. Обязательно ли они пропрыгали квадраты в одном и том же порядке?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка