Олимпиадные задачи по математике для 6-11 класса

Докажите, что если  0 < <i>a, b</i> < 1,  то   <img align="middle" src="/storage/problem-media/109897/problem_109897_img_2.gif"> .

Обозначим<i> S</i>(<i>x</i>)сумму цифр числа<i> x </i>. Найдутся ли три таких натуральных числа<i> a </i>,<i> b </i>и<i> c </i>, что<i> S</i>(<i>a+b</i>)<i><</i>5,<i> S</i>(<i>a+c</i>)<i><</i>5и<i> S</i>(<i>b+c</i>)<i><</i>5, но<i> S</i>(<i>a+b+c</i>)<i>></i>50?

Внутри параболы  <i>y = x</i>²  расположены несовпадающие окружности ω<sub>1</sub>, ω<sub>2</sub>, ω<sub>3</sub>, ... так, что при каждом <i>n</i> > 1 окружность ω<sub><i>n</i></sub> касается ветвей параболы и внешним образом окружности ω<sub><i>n</i>–1</sub> (см. рис.). Найдите радиус окружности σ<sub>1998</sub>, если известно, что диаметр ω<sub>1</sub> равен 1 и она касается параболы в её вершине. <div align="center"><img src="/storage/problem-media/109664/problem_109664_img_2.gif"></div>

Капитан Врунгель в своей каюте разложил перетасованную колоду из 52 карт по кругу, оставив одно место свободным. Матрос Фукс с палубы, не отходя от штурвала и не зная начальной раскладки, называет карту. Если эта карта лежит рядом со свободным местом, Врунгель её туда передвигает, не сообщая Фуксу. Иначе ничего не происходит. Потом Фукс называет ещё одну карту, и так сколько угодно раз, пока сам не скажет "стоп". Может ли Фукс добиться того, чтобы после "стопа" каждая карта наверняка оказалась не там, где была вначале?

Дан треугольник<i> A</i>0<i>B</i>0<i>C</i>0. На отрезке<i> A</i>0<i>B</i>0отмечены точки<i> A</i>1,<i> A</i>2<i>, ,A<sub>n</sub> </i>, а на отрезке<i> B</i>0<i>C</i>0– точки<i> C</i>1,<i> C</i>2<i>, , C<sub>n</sub> </i>, причём все отрезки<i> A<sub>i</sub>C<sub>i+</sub></i>1(<i> i=</i>0<i>,</i>1<i>, n-</i>1), параллельны между собой и все отрезки<i> C<sub>i</sub>A<sub>i+</sub></i>1(<i> i=</i>0<i>,</i>1<i>, n-</i>1) – тоже. Отрезки<i> C</i>0<i>A</i>...

<i>n</i> человек не знакомы между собой. Нужно так познакомить друг с другом некоторых из них, чтобы ни у каких трёх людей не оказалось одинакового числа знакомых. Докажите, что это можно сделать при любом <i>n</i>.

Капитан Врунгель в своей каюте разложил перетасованную колоду из 52 карт по кругу, оставив одно место свободным. Матрос Фукс с палубы, не отходя от штурвала и не зная начальной раскладки, называет карту. Если эта карта лежит рядом со свободным местом, Врунгель её туда передвигает, не сообщая Фуксу. Иначе ничего не происходит. Потом Фукс называет еще одну карту, и так сколько угодно раз, пока он не скажет “стоп”. Может ли Фукс добиться того, чтобы после слова "стоп"

  а) каждая карта наверняка оказалась не там, где была вначале?

  б) рядом со свободным местом наверняка не было туза пик?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка