Олимпиадные задачи по математике для 6-9 класса - сложность 3 с решениями

Лиса Алиса и кот Базилио вырастили на дереве 20 фальшивых купюр и теперь вписывают в них семизначные номера. На каждой купюре есть 7 пустых клеток для цифр. Базилио называет по одной цифре "1" или "2" (других он не знает), а Алиса вписывает названную цифру в любую свободную клетку любой купюры и показывает результат Базилио. Когда все клетки заполнены, Базилио берет себе как можно больше купюр с разными номерами (из нескольких с одинаковым номером он берет лишь одну), а остаток забирает Алиса. Какое наибольшее количество купюр может получить Базилио, как бы ни действовала Алиса?

План дворца шаха – это квадрат размером 6×6, разбитый на комнаты размером 1×1. В середине каждой стены между комнатами есть дверь. Шах сказал своему архитектору: "Cломай часть стен так, чтобы все комнаты стали размером 2×1, новых дверей не появилось, а путь между любыми двумя комнатами проходил не более, чем через <i>N</i> дверей". Какое наименьшее значение <i>N</i> должен назвать шах, чтобы приказ можно было выполнить?

Победив Кащея, потребовал Иван золота, чтобы выкупить Василису у разбойников. Привёл его Кащей в пещеру и сказал: "В сундуке лежат золотые слитки. Но просто так их унести нельзя: они заколдованы. Переложи себе в суму один или несколько. Потом я переложу из сумы в сундук один или несколько, но обязательно другое число. Так мы будем по очереди перекладывать их: ты в суму, я в сундук, каждый раз новое число. Когда новое перекладывание станет невозможным, сможешь унести свою суму со слитками". Какое наибольшее число слитков может унести Иван, как бы ни действовал Кащей, если в сундуке исходно лежит  а) 13;  б) 14 золотых слитков? Как ему это сделать?

Дракон заточил в темницу рыцаря и выдал ему 100 разных монет, половина из которых волшебные (какие именно – знает только дракон). Каждый день рыцарь раскладывает все монеты на две кучки (не обязательно равные). Если в кучках окажется поровну волшебных монет или поровну обычных, дракон отпустит рыцаря. Сможет ли рыцарь гарантированно освободиться не позже, чем

  а) на 50-й день?

  б) на 25-й день?

Из гирек весами 1 г, 2 г, ..., <i>N</i> г требуется выбрать несколько (больше одной) с суммарным весом, равным среднему весу оставшихся гирек. Докажите, что

  а) это можно сделать, если  <i>N</i> + 1  – квадрат целого числа.

  б) если это можно сделать, то  <i>N</i> + 1  – квадрат целого числа.

Каждое звено несамопересекающейся ломаной состоит из нечётного числа сторон клеток квадрата 100×100, соседние звенья перпендикулярны.

Может ли ломаная пройти через все вершины клеток?

Дракон запер в пещере шестерых гномов и сказал: "У меня есть семь колпаков семи цветов радуги. Завтра утром я завяжу вам глаза и надену на каждого по колпаку, а один колпак спрячу. Затем сниму повязки, и вы сможете увидеть колпаки на головах у других, но общаться я вам уже не позволю. После этого каждый втайне от других скажет мне цвет спрятанного колпака. Если угадают хотя бы трое, всех отпущу. Если меньше – съем на обед". Как гномам заранее договориться действовать, чтобы спастись?

Клетчатый прямоугольник разбит на двухклеточные доминошки. В каждой доминошке провели одну из двух диагоналей. Оказалось, что никакие диагонали не имеют общих концов. Докажите, что ровно два из четырёх углов прямоугольника являются концами диагоналей.

55 боксёров участвовали в турнире по системе "проигравший выбывает". Бои шли последовательно. Известно, что у участников каждого боя число предыдущих побед отличалось не более чем на 1. Какое наибольшее число боёв мог провести победитель турнира?

Числа 1, 2, ..., 100 стоят по кругу в некотором порядке.

Может ли случиться, что у любых двух соседних чисел модуль разности не меньше 30, но не больше 50?

Барон Мюнхгаузен говорит, что у него есть многозначное число-палиндром (оно читается одинаково слева направо и справа налево). Написав его на бумажной ленте, барон сделал несколько разрезов между цифрами и получил на кусочках ленты числа 1, 2, ..., <i>N</i> в некотором порядке (каждое – ровно по разу). Не хвастает ли барон?

Было8грузиков массами1,2, <i> .. </i>, 8 г. Один из них потерялся, а остальные выложили в ряд по возрастанию массы. Есть весы с лампочкой, при помощи которых можно проверить, имеют ли две группы грузиков одинаковую массу. Как за3 проверки определить, какой именно грузик потерялся?

В ряд слева направо лежит 31 кошелёк, в каждом по 100 монет. Из одного кошелька часть монет переложили: по одной монете в каждый из кошельков справа от него. За один вопрос можно узнать суммарное число монет в любом наборе кошельков. За какое наименьшее число вопросов можно гарантированно вычислить "облегчённый" кошелёк?

Двое играющих по очереди пишут – каждый на своей половине доски – по одному натуральному числу (повторения разрешаются) так, чтобы сумма всех чисел на доске не превосходила 10000. После того, как сумма всех чисел на доске становится равной 10000, игра заканчивается подсчетом суммы всех цифр на каждой половине. Выигрывает тот, на чьей половине сумма цифр меньше (при равных суммах – ничья). Может ли кто-нибудь из игроков выиграть, как бы ни играл противник?

На столе лежат  <i>N</i> > 2  кучек по одному ореху в каждой. Двое ходят по очереди. За ход нужно выбрать две кучки, где числа орехов взаимно просты, и объединить эти кучки в одну. Выиграет тот, кто сделает последний ход. Для каждого <i>N</i> выясните, кто из играющих может всегда выигрывать, как бы ни играл его противник.

Даны 8 гирек весом1<i>,</i>2<i>,..,</i>8граммов, но неизвестно, какая из них сколько весит. Барон Мюнхгаузен утверждает, что помнит, какая из гирек сколько весит, и в доказательство своей правоты готов провести одно взвешивание, в результате которого будет однозначно установлен вес хотя бы одной из гирь. Не обманывает ли он?

Из 54 одинаковых единичных картонных квадратов сделали незамкнутую цепочку, соединив их шарнирно вершинами. Каждый квадрат (кроме крайних) соединён с соседями двумя противоположными вершинами. Можно ли этой цепочкой квадратов полностью закрыть поверхность куба 3×3×3?

Отец с двумя сыновьями отправились навестить бабушку, которая живёт в 33 км от города. У отца есть мотороллер, скорость которого 25 км/ч, а с пассажиром – 20 км/ч (двух пассажиров на мотороллере перевозить нельзя). Каждый из братьев идёт по дороге со скоростью 5 км/ч. Докажите, что все трое могут добраться до бабушки за 3 часа.

У нескольких крестьян есть 128 овец. Если у кого-то из них оказывается не менее половины всех овец, остальные сговариваются и раскулачивают его: каждый берёт себе столько овец, сколько у него уже есть. Если у двоих по 64 овцы, то раскулачивают кого-то одного из них. Произошло 7 раскулачиваний. Докажите, что все овцы собрались у одного крестьянина.

На столе лежали две колоды, по 36 карт в каждой. Первую колоду перетасовали и положили на вторую. Затем для каждой карты первой колоды подсчитали количество карт между ней и такой же картой второй колоды (то есть сколько карт между семёрками червей, между дамами пик, и т.д.). Чему равна сумма 36 полученных чисел?

Числа от 1 до 37 записали в строку так, что сумма любых первых нескольких чисел делится на следующее за ними число.

Какое число стоит на третьем месте, если на первом месте написано число 37, а на втором – 1?

а) Имеются 300 яблок, любые два из которых различаются по весу не более чем в 2 раза.

Докажите, что их можно разложить в пакеты по два яблока так, чтобы любые два пакета различались по весу не более чем в 1,5 раза. б) Имеются 300 яблок, любые два из которых различаются по весу не более чем в 3 раза.

Докажите, что их можно разложить в пакеты по четыре яблока так, чтобы любые два пакета различались по весу не более чем в 1,5 раза.

Можно ли в таблице 11×11 расставить натуральные числа от 1 до 121 так, чтобы числа, отличающиеся друг от друга на единицу, располагались в клетках с общей стороной, а все точные квадраты попали в один столбец?

В классе 33 человека. У каждого ученика спросили, сколько у него в классе тезок и сколько однофамильцев (включая родственников). Оказалось, что среди названных чисел встретились все целые от 0 до 10 включительно. Докажите, что в классе есть два ученика с одинаковыми именем и фамилией.

В вершинах куба записали восемь различных натуральных чисел, а на каждом его ребре – наибольший общий делитель двух чисел, записанных на концах этого ребра. Могла ли сумма всех чисел, записанных в вершинах, оказаться равной сумме всех чисел, записанных на рёбрах?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка