Олимпиадные задачи по математике - сложность 1-5 с решениями

Bнутри треугольника <i>ABC</i> выбрана произвольная точка <i>M</i>. Докажите, что  <i>MA + MB + MC</i> ≤ max {<i>AB + BC, BC + AC, AC + AB</i>}.

Пусть<i> AD </i>– биссектриса треугольника<i> ABC </i>и прямая<i> l </i>касается окружностей, описанных около треугольников<i> ADB </i>и<i> ADC </i>, в точках<i> M </i>и<i> N </i>соответственно. Докажите, что окружность, проходящая через середины отрезков<i> BD </i>,<i> DC </i>и<i> MN </i>касается прямой<i> l </i>.

Вершины правильного треугольника расположены на сторонах <i>AB</i>, <i>CD</i> и <i>EF</i> правильного шестиугольника <i>ABCDEF</i>.

Докажите, что эти треугольник и шестиугольник имеют общий центр.

В квадрат вписано 1993 различных правильных треугольника (треугольник вписан, если три его вершины лежат на сторонах квадрата).

Докажите, что внутри квадрата можно указать точку, лежащую на границе не менее чем 499 из этих треугольников.

В клетках доски  <i>n×n</i>  произвольно расставлены числа от 1 до <i>n</i>². Докажите, что найдутся две такие соседние клетки (имеющие общую вершину или общую сторону), что стоящие в них числа отличаются не меньше чем на  <i>n</i> + 1.

Дан 101 прямоугольник с целыми сторонами, не превышающими 100.

Докажите, что среди них найдутся три прямоугольника <i>A, B, C</i>, которые можно поместить друг в друга (так что  <i>A</i> ⊂ <i>B</i> ⊂ <i>C</i>).

Рассматривается выпуклый восьмиугольник. С помощью диагонали от него можно отрезать четырёхугольник, причём это можно сделать восемью способами. Может ли случиться, что среди этих восьми четырёхугольников имеется

  а) четыре,

  б) пять

таких, в которые можно вписать окружность?

Точка $M$ лежит внутри выпуклого четырёхугольника $ABCD$ на одинаковом расстоянии от прямых $AB$ и $CD$ и на одинаковом расстоянии от прямых $BC$ и $AD$. Оказалось, что площадь четырёхугольника $ABCD$ равна  $MA\cdot MC + MB\cdot MD$.  Докажите, что четырёхугольник $ABCD$

  а) вписанный;

  б) описанный.

Два остроугольных треугольника $ABC$ и $A_{1}B_{1}C_{1}$ таковы, что точки $B_{1}$ и $C_{1}$ лежат на стороне $BC$, а точка $A_{1}$ – внутри треугольника ABC. Пусть $S$ и $S_{1}$ – соответственно площади этих треугольников. Докажите, что  $\frac{S}{AB+AC} > \frac{S_1}{A_1B_1 + A_1C_1}$.

Докажите, что любой треугольник можно разрезать на 2019 четырёхугольников, каждый из которых одновременно вписанный и описанный.

Три медианы треугольника разделили его углы на шесть углов, среди которых ровно $k$ больше 30°. Каково наибольшее возможное значение $k$?

Докажите, что

  а) любое число вида  3<i>k</i> – 2,  где <i>k</i> целое, есть сумма одного квадрата и двух кубов целых чисел;

  б) любое целое число есть сумма одного квадрата и трёх кубов целых чисел.

В треугольнике $ABC$ точка $M$ – середина стороны $BC$, точка $E$ лежит внутри стороны $AC$,  $BE \geqslant 2AM$.  Докажите, что треугольник $ABC$ тупоугольный.

Две параболы с различными вершинами являются графиками квадратных трёхчленов со старшими коэффициентами <i>p</i> и <i>q</i>. Известно, что вершина каждой из парабол лежит на другой параболе. Чему может быть равно  <i>p + q</i>?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка