Олимпиадные задачи по математике для 11 класса - сложность 3 с решениями
Внутри каждой грани единичного куба выбрали по точке. Затем каждые две точки, лежащие на соседних гранях, соединили отрезком.
Докажите, что сумма длин этих отрезков не меньше, чем <img align="absmiddle" src="/storage/problem-media/116727/problem_116727_img_2.gif"> .
При каких натуральных <i>n</i> > 1 существуют такие натуральные <i>b</i><sub>1</sub>, ..., <i>b<sub>n</sub></i> (не все из которых равны), что при всех натуральных <i>k</i> число
(<i>b</i><sub>1</sub> + <i>k</i>)(<i>b</i><sub>2</sub> + <i>k</i>)...(<i>b<sub>n</sub> + k</i>) является степенью натурального числа? (Показатель степени может зависеть от <i>k</i>, но должен быть больше 1.)
В равнобедренном треугольнике <i>ABC</i> (<i>AB = AC</i>) угол <i>A</i> равен α. На стороне <i>AB</i> взята точка <i>D</i> так, что <i>AD = <sup>AB</sup></i>/<sub><i>n</i></sub>. Найдите сумму <i>n</i> – 1 углов, под которыми виден отрезок <i>AD</i> из точек, делящих сторону <i>BC</i> на <i>n</i> равных частей:
а) при <i>n</i> = 3;
б) при произвольном <i>n</i>.
В равностороннем треугольнике <i>ABC</i> на стороне <i>AB</i> взята точка <i>D</i> так, что <i>AD = <sup>AB</sup></i>/<sub><i>n</i></sub>.
Докажите,что сумма <i>n</i> – 1 углов, под которыми виден отрезок <i>AD</i> из точек, делящих сторону <i>BC</i> на <i>n</i> равных частей, равна 30°:
а) при <i>n</i> = 3;
б) при произвольном <i>n</i>.
Сфера касается всех рёбер тетраэдра. Соединим точки касания на парах несмежных рёбер.
Докажите, что три полученные прямые пересекаются в одной точке.
Три плоскости разрезают параллелепипед на 8 шестигранников, все грани которых – четырёхугольники (каждая плоскость пересекает свои две пары противоположных граней параллелепипеда и не пересекает две оставшиеся грани). Известно, что вокруг одного из этих шестигранников можно описать сферу. Докажите, что и вокруг каждого из них можно описать сферу.