Олимпиадные задачи по математике для 11 класса - сложность 1-3 с решениями

Числа от 51 до 150 расставлены в таблицу 10×10. Может ли случиться, что для каждой пары чисел <i>a, b</i>, стоящих в соседних по стороне клетках, хотя бы одно из уравнений  <i>x</i>² – <i>ax + b</i> = 0  и  <i>x</i>² – <i>bx + a</i> = 0  имеет два целых корня?

В клетки таблицы 100×100 записаны ненулевые цифры. Оказалось, что все 100 стозначных чисел, записанных по горизонтали, делятся на 11. Могло ли так оказаться, что ровно 99 стозначных чисел, записанных по вертикали, также делятся на 11?

На отрезке  [0, <i>N</i>]  отмечены его концы и еще две точки так, что длины отрезков, на которые разбился отрезок  [0, <i>N</i>],  целые и взаимно просты в совокупности. Если нашлись такие две отмеченные точки <i>A</i> и <i>B</i>, что расстояние между ними кратно 3, то можно разделить отрезок <i>AB</i> на три равных части, отметить одну из точек деления и стереть одну из точек <i>A, B</i>. Верно ли, что за несколько таких действий можно отметить любую наперед заданную целую точку отрезка  [0, <i>N</i>]?

Приведённый квадратный трёхчлен  <i>f</i>(<i>x</i>) имеет два различных корня. Может ли так оказаться, что уравнение  <i>f</i>(<i>f</i>(<i>x</i>)) = 0  имеет три различных корня, а уравнение  <i>f</i>(<i>f</i>(<i>f</i>(<i>x</i>))) = 0  – семь различных корней?

Имеется таблица <i>n×n</i>, в  <i>n</i> – 1  клетках которой записаны единицы, а в остальных клетках – нули. С таблицей разрешается проделывать следующую операцию: выбрать клетку, вычесть из числа, стоящего в этой клетке, единицу, а ко всем остальным числам, стоящим в одной строке или в одном столбце с выбранной клеткой, прибавить единицу. Можно ли из этой таблицы с помощью указанных операций получить таблицу, в которой все числа равны?

Приведенные квадратные трёхчлены  <i>f</i>(<i>x</i>) и <i>g</i>(<i>x</i>) принимают отрицательные значения на непересекающихся интервалах.

Докажите, что найдутся такие положительные числа α и β, что для любого действительного <i>x</i> будет выполняться неравенство α<i>f</i>(<i>x</i>) + β<i>g</i>(<i>x</i>) > 0.

Найдите все функции<i> f </i>:<i> <img src="/storage/problem-media/109707/problem_109707_img_2.gif"><img src="/storage/problem-media/109707/problem_109707_img_3.gif"><img src="/storage/problem-media/109707/problem_109707_img_2.gif"> </i>, которые для всех<i> x,y,z<img src="/storage/problem-media/109707/problem_109707_img_4.gif"><img src="/storage/problem-media/109707/problem_109707_img_2.gif"> </i>удовлетворяют неравенству<i> f</i>(<i>x+y</i>)<i>+f</i>(<i>y+z</i>)<i>+f</i>(<i>z+x</i>)<i><img src="/storage/problem-media/109707/problem_109707_img_5.gif"> </i>3<i>f</i&gt...

Существуют ли 19 таких попарно различных натуральных чисел с одинаковой суммой цифр, что их сумма равна 1999?

Пусть <i>P</i>(<i>x</i>) – многочлен степени  <i>n</i> ≥ 2  с неотрицательными коэффициентами, а <i>a, b</i> и <i>c</i> – длины сторон некоторого остроугольного треугольника.

Докажите, что числа  <img align="absmiddle" src="/storage/problem-media/66160/problem_66160_img_2.gif">  также являются длинами сторон некоторого остроугольного треугольника.

Олег нарисовал пустую таблицу 50×50 и написал сверху от каждого столбца и слева от каждой строки по числу. Оказалось, что все 100 написанных чисел различны, причём 50 из них рациональные, а остальные 50 – иррациональные. Затем в каждую клетку таблицы он записал произведение чисел, написанных около её строки и её столбца ("таблица умножения"). Какое наибольшее количество произведений в этой таблице могли оказаться рациональными числами?

Олег нарисовал пустую таблицу 50×50 и написал сверху от каждого столбца и слева от каждой строки по ненулевому числу. Оказалось, что все 100 написанных чисел различны, причём 50 из них рациональные, а остальные 50 – иррациональные. Затем в каждую клетку таблицы он записал произведение чисел, написанных около её строки и её столбца ("таблица умножения"). Какое наибольшее количество произведений в этой таблице могли оказаться рациональными числами?

Олег нарисовал пустую таблицу 50×50 и написал сверху от каждого столбца и слева от каждой строки по числу. Оказалось, что все 100 написанных чисел различны, причём 50 из них рациональные, а остальные 50 – иррациональные. Затем в каждую клетку таблицы он записал сумму чисел, написанных около её строки и её столбца ("таблица сложения"). Какое наибольшее количество сумм в этой таблице могли оказаться рациональными числами?

Назовём натуральное число <i>хорошим</i>, если среди его делителей есть ровно два простых числа.

Могут ли 18 подряд идущих натуральных чисел быть хорошими?

Глава Монетного двора хочет выпустить монеты 12 номиналов (каждый – в натуральное число рублей) так, чтобы любую сумму от 1 до 6543 рублей можно было заплатить без сдачи, используя не более 8 монет. Сможет ли он это сделать?

(При уплате суммы можно использовать несколько монет одного номинала.)

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка