Олимпиадные задачи по математике для 10 класса - сложность 1-2 с решениями

Существуют ли такие 2013 различных натуральных чисел, что сумма каждых 2012 из них не меньше квадрата оставшегося?

Петя выбрал натуральное число  <i>a</i> > 1  и выписал на доску пятнадцать чисел  1 + <i>a</i>,  1 + <i>a</i>²,  1 + <i>a</i>³,  ...,  1 + <i>a</i><sup>15</sup>.  Затем он стёр несколько чисел так, что каждые два оставшихся числа взаимно просты. Какое наибольшее количество чисел могло остаться на доске?

Найдите все такие числа <i>a</i>, что для любого натурального <i>n</i> число  <i>an</i>(<i>n</i> + 2)(<i>n</i> + 3)(<i>n</i> + 4)  будет целым.

В клетки таблицы 100×100 записаны ненулевые цифры. Оказалось, что все 100 стозначных чисел, записанных по горизонтали, делятся на 11. Могло ли так оказаться, что ровно 99 стозначных чисел, записанных по вертикали, также делятся на 11?

Приведённый квадратный трёхчлен  <i>f</i>(<i>x</i>) имеет два различных корня. Может ли так оказаться, что уравнение  <i>f</i>(<i>f</i>(<i>x</i>)) = 0  имеет три различных корня, а уравнение  <i>f</i>(<i>f</i>(<i>f</i>(<i>x</i>))) = 0  – семь различных корней?

Существуют ли 19 таких попарно различных натуральных чисел с одинаковой суммой цифр, что их сумма равна 1999?

Пусть <i>P</i>(<i>x</i>) – многочлен степени  <i>n</i> ≥ 2  с неотрицательными коэффициентами, а <i>a, b</i> и <i>c</i> – длины сторон некоторого остроугольного треугольника.

Докажите, что числа  <img align="absmiddle" src="/storage/problem-media/66160/problem_66160_img_2.gif">  также являются длинами сторон некоторого остроугольного треугольника.

Назовём натуральное число <i>интересным</i>, если сумма его цифр – простое число.

Какое наибольшее количество интересных чисел может быть среди пяти подряд идущих натуральных чисел?

За круглым столом сидят 2015 человек, каждый из них – либо рыцарь, либо лжец. Рыцари всегда говорят правду, лжецы всегда лгут. Им раздали по одной карточке, на каждой карточке написано по числу; при этом все числа на карточках различны. Посмотрев на карточки соседей, каждый из сидящих за столом сказал: "Мое число больше, чем у каждого из двух моих соседей". После этого <i>k</i> из сидящих сказали: "Мое число меньше, чем у каждого из двух моих соседей". При каком наибольшем <i>k</i> это могло случиться?

Назовём натуральное число <i>хорошим</i>, если среди его делителей есть ровно два простых числа.

Могут ли 18 подряд идущих натуральных чисел быть хорошими?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка