Олимпиадные задачи по математике для 11 класса - сложность 1-2 с решениями
На сторонах правильного 2009-угольника отметили по точке. Эти точки являются вершинами 2009-угольника площади <i>S</i>. Каждую из отмеченных точек отразили относительно середины стороны, на которой эта точка лежит. Докажите, что 2009-угольник с вершинами в отражённых точках также имеет площадь <i>S</i>.
Диагонали выпуклого четырёхугольника <i>ABCD</i> перпендикулярны и пересекаются в точке <i>O</i>. Известно, что сумма радиусов окружностей, вписанных в треугольники <i>AOB</i> и <i>COD</i>, равна сумме радиусов окружностей, вписанных в треугольники <i>BOC</i> и <i>DOA</i>. Докажите, что
а) четырёхугольник <i>ABCD</i> – описанный;
б) четырёхугольник <i>ABCD</i> симметричен относительно одной из своих диагоналей.
Можно ли поверхность куба оклеить без пропусков и наложений тремя треугольниками?
На плоскости даны три красные точки, три синие точки и ещё точка <i>O</i>, лежащая как внутри треугольника с красными вершинами, так и внутри треугольника с синими вершинами, причём расстояние от <i>O</i> до любой красной точки меньше расстояния от <i>O</i> до любой синей точки. Могут ли все красные и все синие точки лежать на одной и той же окружности?
<i>n</i> бумажных кругов радиуса 1 уложены на плоскость таким образом, что их границы проходят через одну точку, причём эта точка находится внутри области, покрытой кругами. Эта область представляет собой многоугольник с криволинейными сторонами. Найдите его периметр. <div align="center"><img src="/storage/problem-media/98412/problem_98412_img_2.gif"></div>
Дан вписанный четырехугольник $ABCD$. Пусть $E=AC\cap BD$, $F=AD\cap BC$. Биссектрисы углов $AFB$ и $AEB$ пересекают $CD$ в точках $X, Y$. Докажите, что точки $A, B, X, Y$ лежат на одной окружности.
Пусть $O$ – центр описанной окружности треугольника $ABC$. На стороне $BC$ нашлись точки $X$ и $Y$ такие, что $AX=BX$ и $AY=CY$. Докажите, что окружность, описанная около треугольника $AXY$, проходит через центры описанных окружностей треугольников $AOB$ и $AOC$.
Две окружности с центрами $O_1$ и $O_2$ касаются внешним образом в точке $T$. К ним проведена общая внешняя касательная, касающаяся первой окружности в точке $A$, а второй – в точке $B$. Общая касательная к окружностям, проведённая в точке $T$, пересекает прямую $AB$ в точке $M$. Пусть $AC$ – диаметр первой окружности. Докажите, что отрезки $CM$ и $AO_2$ перпендикулярны.
На плоскости отметили 30 точек, никакие три из которых не лежат на одной прямой, и провели семь красных прямых, не проходящих через отмеченные точки. Могло ли случиться, что каждый отрезок, соединяющий какие-то две отмеченные точки, пересекается хоть с одной красной прямой?
Фиксированы окружность, точка <i>A</i> на ней и точка <i>K</i> вне окружности. Секущая, проходящая через <i>K</i>, пересекает окружность в точках <i>P</i> и <i>Q</i>. Докажите, что ортоцентры треугольников <i>APQ</i> лежат на фиксированной окружности.
Существуют ли такие 99 последовательных натуральных чисел, что наименьшее из них делится на 100, следующее делится на 99, третье делится на 98, ..., последнее делится на 2?
Изначально на доске записаны несколько натуральных чисел (больше одного). Затем каждую минуту на доску дописывается число, равное сумме квадратов всех уже записанных на ней чисел (так, если бы на доске изначально были записаны числа 1, 2, 2, то на первой минуте было бы дописано число 1² + 2² + 2²). Докажите, что сотое дописанное число имеет хотя бы 100 различных простых делителей.
В пространстве даны три отрезка <i>A</i><sub>1</sub><i>A</i><sub>2</sub>, <i>B</i><sub>1</sub><i>B</i><sub>2</sub> и <i>C</i><sub>1</sub><i>C</i><sub>2</sub>, не лежащие в одной плоскости и пересекающиеся в одной точке <i>P</i>. Обозначим через <i>O<sub>ijk</sub></i> центр сферы, проходящей через точки <i>A<sub>i</sub>, B<sub>j</sub>, C<sub>k</sub></i> и <i>P</i>. Докажите, что прямые <i>O</i><sub>111</sub><i>O</i><sub>222</sub>, <i>O</i><sub>112</sub><i>O</i><sub>2...
На стороне <i>AB</i> выпуклого четырёхугольника <i>ABCD</i> взяты точки <i>K</i> и <i>L</i> (точка<i>K</i> лежит между <i>A</i> и <i>L</i>), а на стороне <i>CD</i> взяты точки <i>M</i> и <i>N</i> (точка <i>M</i> между <i>C</i> и <i>N</i>). Известно, что <i>AK = KN = DN</i> и <i>BL = BC = CM</i>. Докажите, что если <i>BCNK</i> – вписанный четырёхугольник, то и <i>ADML</i> тоже вписан.
Каждая из двух равных окружностей ω<sub>1</sub> и ω<sub>2</sub> проходит через центр другой. Треугольник <i>ABC</i> вписан в ω<sub>1</sub>, а прямые <i>AC, BC</i> касаются ω<sub>2</sub>.
Докажите, что cos∠<i>A</i> + cos∠<i>B</i> = 1.
Какое наименьшее число соединений требуется для организации проводной сети связи из 10 узлов, чтобы при выходе из строя любых двух узлов связи сохранялась возможность передачи информации между любыми двумя оставшимися (хотя бы по цепочке через другие узлы)?