Олимпиадные задачи по математике для 7 класса

Является ли число  4<sup>9</sup> + 6<sup>10</sup> + 3<sup>20</sup>  простым?

По окружности в одном направлении на равных расстояниях курсируют <i>n</i> поездов. На этой дороге в вершинах правильного треугольника расположены станции <i>A, B</i> и <i>C</i> (обозначенные по направлению движения). Ира входит на станцию <i>A</i> и одновременно Лёша входит на станцию <i>B</i>, чтобы уехать на ближайших поездах. Известно, что если они входят на станции в тот момент, когда машинист Рома проезжает лес, то Ира сядет в поезд раньше Лёши, а в остальных случаях Лёша – раньше Иры или одновременно с ней. Какая часть дороги проходит по лесу?

Четыре кузнечика сидят в вершинах квадрата. Каждую минуту один из них прыгает в точку, симметричную ему относительно другого кузнечика. Докажите, что кузнечики не могут в некоторый момент оказаться в вершинах квадрата большего размера.

Три ёжика делили три кусочка сыра массами 5 г, 8 г и 11 г. Лиса стала им помогать. Она может от любых двух кусочков одновременно отрезать и съесть по 1 г сыра. Сможет ли лиса оставить ёжикам равные кусочки сыра?

Четырёхугольник с длинами сторон 1, 1, 1 и 2 имеет две параллельные стороны и разбит на четыре одинаковые фигуры (см. рисунок). В результате верхняя сторона разделилась на четыре отрезка. Найдите отношение длины большего отрезка к меньшему. <div align="center"><img src="/storage/problem-media/103820/problem_103820_img_2.gif"></div>

Футбольный мяч сшит из 32 лоскутков: белых шестиугольников и чёрных пятиугольников. Каждый чёрный лоскут граничит только с белыми, а каждый белый — с тремя чёрными и тремя белыми. Сколько лоскутков белого цвета?

Найдите хотя бы две пары натуральных чисел, для которых верно равенство  2<i>x</i>³ = <i>y</i><sup>4</sup>.

В одной из школ 20 раз проводился кружок по астрономии. На каждом занятии присутствовало ровно пять школьников, причём никакие два школьника не встречались на кружке более одного раза. Докажите, что всего на кружке побывало не менее 20 школьников.

Сто человек ответили на вопрос: "Будет ли новый президент лучше прежнего?" Из них <i>a</i> человек считают, что будет лучше, <i>b</i> – что будет такой же, и <i>c</i> – что будет хуже. Социологи построили два показателя "оптимизма" опрошенных:  <i>m = a + <sup>b</sup></i>/<sub>2</sub>  и  <i>n = a – c</i>.  Оказалось, что  <i>m</i> = 40.  Найдите <i>n</i>.

Четыре кузнечика сидели в вершинах квадрата. Каждую секунду один из кузнечиков прыгает через другого в симметричную точку (если <i>A</i> прыгает через <i>B</i> в точку <i>A</i><sub>1</sub>, то векторы   <img align="top" src="/storage/problem-media/98261/problem_98261_img_2.gif">   и   <img align="top" src="/storage/problem-media/98261/problem_98261_img_3.gif">   равны). Докажите, что три кузнечика не могут оказаться

  а) на одной прямой, параллельной стороне квадрата;

  б) на одной произвольной прямой.  

Три кузнечика сидят на прямой так, что два крайних отстоят на 1 м от среднего. Каждую секунду один из кузнечиков прыгает через другого в симметричную точку (если <i>A</i> прыгает через <i>B</i> в точку <i>A</i><sub>1</sub>, то  <i>AB = BA</i><sub>1</sub>).  Через некоторое время кузнечики оказались на тех же местах, что и вначале, но в другом порядке. Докажите, что поменялись местами крайние кузнечики.

Ученик не заметил знака умножения между двумя трёхзначными числами и написал одно шестизначное число. Результат получился в три раза больше.

Найти эти числа.

Имеется два дома, в каждом по два подъезда. Жильцы держат кошек и собак, причём доля кошек (отношение числа кошек к общему числу кошек и собак) в первом подъезде первого дома больше доли кошек в первом подъезде второго дома, а доля кошек во втором подъезде первого дома больше доли кошек во втором подъезде второго дома. Верно ли, что доля кошек в первом доме больше доли кошек во втором доме?

В каждой вершине куба записано по числу. Вместо каждого числа записывают среднее арифметическое чисел, стоящих в трёх соседних вершинах (числа заменяют одновременно). После десяти таких операций в каждой вершине оказалось исходное число. Обязательно ли все исходные числа были одинаковы?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка