Олимпиадные задачи из источника «Финальный тур» для 11 класса

  Преподаватель кружка по теории вероятностей откинулся в кресле и посмотрел на экран. Список записавшихся готов. Всего получилось <i>n</i> человек. Только они пока не по алфавиту, а в случайном порядке, в каком они приходили на занятие.

  "Надо отсортировать их в алфавитном порядке, – подумал преподаватель. – Пойду по порядку сверху вниз, и, если нужно, буду переставлять фамилию ученика вверх в подходящее место. Каждую фамилию придётся переставить не более одного раза".

  Докажите, что математическое ожидание числа фамилий, которые не придётся переставлять, равно  1 + ½ + &frac13; + ... + <sup>1</sup>/<sub><i>n</i></sub>.

Игральный кубик симметричен, но устроен необычно: на двух гранях по два очка, а на остальных четырёх – по одному. Сергей бросил кубик несколько раз, и в результате сумма всех выпавших очков оказалась 3. Найдите вероятность того, что при каком-то броске выпала грань с 2 очками.

Поля шахматной доски пронумерованы по строкам сверху вниз числами от 1 до 64. На доску случайным образом поставлено шесть ладей, которые не бьют друг друга (одна из возможных расстановок показана на рисунке). Найдите математическое ожидание суммы номеров полей, занятых ладьями. <div align="center"><img src="/storage/problem-media/65786/problem_65786_img_2.gif"></div>

Билет на электричку стоит 50 рублей, а штраф за безбилетный проезд – 450 рублей. Если безбилетник (заяц) попадается контролёру, то оплачивает и штраф, и стоимость билета. Известно, что контролёр встречается в среднем один раз на 10 поездок. Заяц ознакомился с основами теории вероятностей и решил придерживаться стратегии, которая делает математическое ожидание расходов наименьшим возможным. Как ему поступать: покупать билет каждый раз, не покупать никогда или бросать монетку – покупать билет или нет?

Однажды осенью Рассеянный Учёный глянул на свои старинные настенные часы и увидел, что на циферблате уснули три мухи. Первая спала в точности на отметке 12 часов, а две другие так же аккуратно расположились на отметках 2 часа и 5 часов. Учёный произвёл измерения и определил, что часовая стрелка мухам не грозит, а вот минутная сметёт их всех по очереди. Найдите вероятность того, что ровно через 40 минут после того, как Учёный заметил мух, ровно две мухи из трёх были сметены минутной стрелкой.

Дана таблица 3×3 (как для игры в крестики-нолики). В четыре случайно выбранные ячейки случайным образом поставили четыре фишки.

Найдите вероятность того, что среди этих четырёх фишек найдутся три, которые стоят в один ряд по вертикали, по горизонтали или по диагонали.

ЕГЭ по математике в волшебной стране Оз устроено следующим образом. Каждую работу независимо друг от друга проверяют три преподавателя, и каждый ставит за каждую задачу 0 или 1 балл. Затем компьютер находит среднее арифметическое оценок за эту задачу и округляет его до ближайшего целого. Затем баллы, полученные за все задачи, суммируются. Случилось так, что в одной из работ каждый из трёх экспертов поставил по 1 баллу за 3 задачи и 0 баллов за все прочие задачи. Найдите наибольший возможный суммарный балл за эту работу.

Бухгалтер конторы "Рога и копыта" Балаганов составил штатное расписание – таблицу, в которой указаны все должности, количество сотрудников и их оклады (месячные зарплаты). Кроме того, указан средний оклад по конторе. Некоторые места Паниковский случайно заляпал вареньем, и стало невозможно прочитать, что там написано. <div align="center"><img src="/storage/problem-media/65781/problem_65781_img_2.png"></div>Либо найдите заляпанные вареньем числа, либо докажите, что Балаганов ошибся.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка