Олимпиадные задачи из источника «2011-2012» для 9 класса - сложность 3 с решениями

В некотором городе сеть автобусных маршрутов устроена так, что каждые два маршрута имеют ровно одну общую остановку, и на каждом маршруте есть хотя бы 4 остановки. Докажите, что все остановки можно распределить между двумя компаниями так, что на каждом маршруте найдутся остановки обеих компаний.

Изначально на доске записаны 10 последовательных натуральных чисел. За одну операцию разрешается выбрать любые два числа на доске (обозначим их <i>a</i> и <i>b</i>) и заменить их на числа  <i>a</i>² – 2011<i>b</i>²  и <i>ab</i>. После нескольких таких операций на доске не осталось ни одного из исходных чисел. Могли ли там опять оказаться 10 последовательных натуральных чисел (записанных в некотором порядке)?

Точки <i>A</i><sub>1</sub>, <i>B</i><sub>1</sub>, <i>C</i><sub>1</sub> выбраны на сторонах <i>BC</i>, <i>CA</i> и <i>AB</i> треугольника <i>ABC</i> соответственно. Оказалось, что  <i>AB</i><sub>1</sub> – <i>AC</i><sub>1</sub> = <i>CA</i><sub>1</sub> – <i>CB</i><sub>1</sub> = <i>BC</i><sub>1</sub> – <i>BA</i><sub>1</sub>.  Пусть <i>I<sub>A</sub>, I<sub>B</sub></i> и <i>I<sub>C</sub></i> – центры окружностей, вписанных в треугольники <i>AB</i><sub>1</su...

Положительные действительные числа    <i>a</i><sub>1</sub>, ..., <i>a<sub>n</sub></i>  и <i>k</i> таковы, что  <i>a</i><sub>1</sub> + ... + <i>a<sub>n</sub></i> = 3<i>k</i>,   <img align="absmiddle" src="/storage/problem-media/116758/problem_116758_img_2.gif">   и   <img align="absmiddle" src="/storage/problem-media/116758/problem_116758_img_3.gif"> .

Докажите, что какие-то два из чисел  <i>a</i><sub>1</sub>, ..., <i>a<sub>n</sub></i>  отличаются больше чем на 1.

Дан параллелограмм <i>ABCD</i> с тупым углом <i>A</i>. Точка <i>H</i> – основание перпендикуляра, опущенного из точки <i>A</i> на <i>BC</i>. Продолжение медианы <i>CM</i> треугольника <i>ABC</i> пересекает описанную около него окружность в точке <i>K</i>. Докажите, что точки <i>K</i>, <i>H</i>, <i>C</i> и <i>D</i> лежат на одной окружности.

На окружности отмечены 2012 точек, делящих её на равные дуги. Из них выбрали <i>k</i> точек и построили выпуклый <i>k</i>-угольник с вершинами

в выбранных точках. При каком наибольшем <i>k</i> могло оказаться, что у этого многоугольника нет параллельных сторон?

Выпуклый четырёхугольник <i>ABCD</i> таков, что  <i>AB</i>·<i>CD</i> = <i>AD</i>·<i>BC</i>.  Докажите, что –∠<i>BAC</i> + ∠<i>CBD</i> + ∠<i>DCA</i> + ∠<i>ADB</i> = 180°.

Даны различные натуральные числа <i>a</i>, <i>b</i>. На координатной плоскости нарисованы графики функций  <i>y</i> = sin <i>ax</i>,  <i>y</i> = sin <i>bx</i>  и отмечены все точки их пересечения. Докажите, что существует натуральное число <i>c</i>, отличное от <i>a</i>, <i>b</i> и такое, что график функции  <i>y</i> = sin <i>cx</i>  проходит через все отмеченные точки.

Главная аудитория фирмы "Рога и копыта" представляет собой квадратный зал из восьми рядов по восемь мест. 64 сотрудника фирмы писали в этой аудитории тест, в котором было шесть вопросов с двумя вариантами ответа на каждый. Могло ли так оказаться, что среди наборов ответов сотрудников нет одинаковых, причем наборы ответов любых двух людей за соседними столами совпали не больше, чем в одном вопросе? (Столы называются соседними, если они стоят рядом в одном ряду или друг за другом в соседних рядах.)

В трапеции <i>ABCD</i> боковая сторона <i>CD</i> перпендикулярна основаниям, <i>O</i> – точка пересечения диагоналей. На описанной окружности треугольника <i>OCD</i> взята точка <i>S</i>, диаметрально противоположная точке <i>O</i>. Докажите, что  ∠<i>BSC</i> = ∠<i>ASD</i>.

На окружности отмечено 2<i>N</i> точек (<i>N</i> – натуральное число). Известно, что через любую точку внутри окружности проходит не более двух хорд с концами в отмеченных точках. Назовем <i>паросочетанием</i> такой набор из <i>N</i> хорд с концами в отмеченных точках, что каждая отмеченная точка является концом ровно одной из этих хорд. Назовём паросочетание <i>чётным</i>, если количество точек, в которых пересекаются его хорды, чётно, и <i>нечётным</i> иначе. Найдите разность между количеством чётных и нечётных паросочетаний.

Дан квадрат <i>n</i>×<i>n</i>. Изначально его клетки раскрашены в белый и чёрный цвета в шахматном порядке, причём хотя бы одна из угловых клеток чёрная. За один ход разрешается в некотором квадрате 2×2 одновременно перекрасить входящие в него четыре клетки по следующему правилу: каждую белую перекрасить в чёрный цвет, каждую чёрную – в зелёный, а каждую зелёную – в белый. При каких <i>n</i> за несколько ходов можно получить шахматную раскраску, в которой чёрный и белый цвета поменялись местами?

Целые числа <i>a</i> и <i>b</i> таковы, что при любых натуральных <i>m</i> и <i>n</i> число  <i>am</i>² + <i>bn</i>²  является точным квадратом. Докажите, что  <i>ab</i> = 0.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка