Олимпиадные задачи из источника «2010-2011» для 8 класса - сложность 3 с решениями

На столе лежит куча из более чем <i>n</i>² камней. Петя и Вася по очереди берут камни из кучи, первым берёт Петя. За один ход можно брать любое простое число камней, меньшее <i>n</i>, либо любое кратное <i>n</i> число камней, либо один камень. Докажите, что Петя может действовать так, чтобы взять последний камень независимо от действий Васи.

Для натуральных чисел  <i>a</i> > <i>b</i> > 1  определим последовательность  <i>x</i><sub>1</sub>, <i>x</i><sub>2</sub>, ...  формулой   <img align="absmiddle" src="/storage/problem-media/116644/problem_116644_img_2.gif"> .   Найдите наименьшее <i>d</i>, при котором ни при каких <i>a</i> и <i>b</i> эта последовательность не содержит <i>d</i> последовательных членов, являющихся простыми числами.

Дан остроугольный треугольник <i>ABC</i>. На продолжениях <i>BB</i><sub>1</sub> и <i>CC</i><sub>1</sub> его высот за точки <i>B</i><sub>1</sub> и <i>C</i><sub>1</sub> выбраны соответственно точки <i>P</i> и <i>Q</i> так, что угол <i>PAQ</i> – прямой. Пусть <i>AF</i> – высота треугольника <i>APQ</i>. Докажите, что угол <i>BFC</i> – прямой.

Периметр треугольника <i>ABC</i> равен 4. На лучах <i>AB</i> и <i>AC</i> отмечены точки <i>X</i> и <i>Y</i> так, что  <i>AX = AY</i> = 1.  Отрезки <i>BC</i> и <i>XY</i> пересекаются в точке <i>M</i>. Докажите, что периметр одного из треугольников <i>ABM</i> и <i>ACM</i> равен 2.

В каждой клетке таблицы, состоящей из 10 столбцов и <i>n</i> строк, записана цифра. Известно, что для каждой строки <i>A</i> и любых двух столбцов найдётся строка, отличающаяся от <i>A</i> ровно в этих двух столбцах. Докажите, что  <i>n</i> ≥ 512.

Пусть <i>ABC</i> – правильный треугольник. На его стороне <i>AC</i> выбрана точка <i>T</i>, а на дугах <i>AB</i> и <i>BC</i> его описанной окружности выбраны точки <i>M</i> и <i>N</i> соответственно так, что  <i>MT || BC</i>  и  <i>NT || AB</i>.  Отрезки <i>AN</i> и <i>MT</i> пересекаются в точке <i>X</i>, а отрезки <i>CM</i> и <i>NT</i> – в точке <i>Y</i>. Докажите, что периметры многоугольников <i>AXYC</i> и <i>XMBNY</i> равны.

У Пети и Коли в тетрадях записаны по два числа; изначально – это числа 1 и 2 у Пети, 3 и 4 – у Коли. Раз в минуту Петя составляет квадратный трёхчлен <i>f</i>(<i>x</i>), корнями которого являются записанные в его тетради два числа, а Коля – квадратный трёхчлен <i>g</i>(<i>x</i>), корнями которого являются записанные в его тетради два числа. Если уравнение  <i>f</i>(<i>x</i>) = <i>g</i>(<i>x</i>)  имеет два различных корня, то один из мальчиков заменяет свою пару чисел на эти корни; иначе ничего не происходит. Какое второе число могло оказаться у Пети в тетради в тот момент, когда первое стало равным 5?

Существуют ли три взаимно простых в совокупности натуральных числа, квадрат каждого из которых делится на сумму двух оставшихся?

На доске нарисован выпуклый 2011-угольник. Петя последовательно проводит в нём диагонали так, чтобы каждая вновь проведённая диагональ пересекала по внутренним точкам не более одной из проведённых ранее диагоналей. Какое наибольшее количество диагоналей может провести Петя?

Дан остроугольный треугольник <i>ABC</i>. Окружность, проходящая через вершину <i>B</i> и центр <i>O</i> его описанной окружности, вторично пересекает стороны <i>BC</i> и <i>BA</i> в точках <i>P</i> и <i>Q</i> соответственно. Докажите, что ортоцентр треугольника <i>POQ</i> лежит на прямой <i>AC</i>.

Прямую палку длиной 2 метра распилили на <i>N</i> палочек, длина каждой из которых выражается целым числом сантиметров. При каком наименьшем <i>N</i> можно гарантировать, что, использовав все получившиеся палочки, можно, не ломая их, сложить контур некоторого прямоугольника?

Даны положительные числа <i>x</i>, <i>y</i>, <i>z</i>. Докажите неравенство   <img align="middle" src="/storage/problem-media/116543/problem_116543_img_2.gif">

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка