Олимпиадные задачи из источника «Заключительный этап» для 11 класса - сложность 1-3 с решениями

Дан набор из<i> n></i>2векторов. Назовем вектор набора длинным, если его длина не меньше длины суммы остальных векторов набора. Докажите, что если каждый вектор набора– длинный, то сумма всех векторов набора равна нулю.

Дан многочлен  <i>P</i>(<i>x</i>) = <i>a</i><sub>0</sub><i>x<sup>n</sup> + a</i><sub>1</sub><i>x</i><sup><i>n</i>–1</sup> + ... + <i>a</i><sub><i>n</i>–1</sub><i>x + a<sub>n</sub></i>.  Положим  <i>m</i> = min {<i>a</i><sub>0</sub>, <i>a</i><sub>0</sub> + <i>a</i><sub>1</sub>, ..., <i>a</i><sub>0</sub> + <i>a</i><sub>1</sub> + ... + <i>a<sub>n</sub></i>}.

Докажите, что  <i>P</i>(<i>x</i>) ≥ <i>mx<sup>n</sup></i>...

В бесконечной последовательности  (<i>x<sub>n</sub></i>)  первый член <i>x</i><sub>1</sub> – рациональное число, большее 1, и  <i>x</i><sub><i>n</i>+1</sub> = <i>x<sub>n</sub></i> + <sup>1</sup>/<sub>[<i>x<sub>n</sub></i>]</sub>  при всех натуральных <i>n</i>.

Докажите, что в этой последовательности есть целое число.

Вписанная окружность треугольника <i>ABC</i> касается сторон <i>BC, AC, AB</i> в точках <i>A</i><sub>1</sub>, <i>B</i><sub>1</sub>, <i>C</i><sub>1</sub> соответственно. Отрезок <i>AA</i><sub>1</sub> вторично пересекает вписанную окружность в точке <i>Q</i>. Прямая <i>l</i> параллельна <i>BC</i> и проходит через <i>A</i>. Прямые <i>A</i><sub>1</sub><i>C</i><sub>1</sub> и <i>A</i><sub>1</sub><i>B</i><sub>1</sub> пересекают <i>l</i> в точках <i>P</i> и <i>R</i> соответственно. Докажите, что  ∠<i...

Докажите, что при<i> k></i>10в произведении <center><i>

f</i>(<i>x</i>)<i> = cos x cos </i>2<i>x cos </i>3<i>x .. cos </i>2<i><sup>k</sup> x

</i></center> можно заменить один<i> cos </i>на<i> sin </i>так, что получится функция<i> f<sub>1</sub></i>(<i>x</i>), удовлетворяющая при всех действительных<i> x </i>неравенству<i> |f<sub>1</sub></i>(<i>x</i>)<i>|<img src="/storage/problem-media/111826/problem_111826_img_2.gif"> <img src="/storage/problem-media/111826/problem_111826_img_3.gif"> </i>.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка