Олимпиадные задачи из источника «9 Класс» - сложность 2-4 с решениями
9 Класс
НазадСреди 11 внешне одинаковых монет 10 настоящих, весящих по 20 г, и одна фальшивая, весящая 21 г. Имеются чашечные весы, которые оказываются в равновесии, если груз на правой их чашке ровно вдвое тяжелее, чем на левой. (Если груз на правой чашке меньше, чем удвоенный груз на левой, то перевешивает левая чашка, если больше, то правая.) Как за три взвешивания на этих весах найти фальшивую монету?
Существуют ли такие простые числа <i>p</i><sub>1</sub>, <i>p</i><sub>2</sub>, ..., <i>p</i><sub>2007</sub>, что <img align="absmiddle" src="/storage/problem-media/111788/problem_111788_img_2.gif"> делится на <i>p</i><sub>2</sub>, <img align="absmiddle" src="/storage/problem-media/111788/problem_111788_img_3.gif"> делится на <i>p</i><sub>3</sub>, ..., <img align="absmiddle" src="/storage/problem-media/111788/problem_111788_img_4.gif"> делится на <i>p</i><sub>1</sub>?
Среди натуральных чисел от 1 до 1200 выбрали 372 различных числа так, что никакие два из них не различаются на 4, 5 или 9. Докажите, что число 600 является одним из выбранных.
Бесконечная возрастающая арифметическая прогрессия, состоящая из натуральных чисел, содержит точный куб натурального числа.
Докажите, что она содержит и точный куб, не являющийся точным квадратом.
На стороне<i> BC </i>треугольника<i> ABC </i>выбрана произвольная точка<i> D </i>. В треугольники<i> ABD </i>и<i> ACD </i>вписаны окружности с центрами<i> K </i>и<i> L </i>соответственно. Докажите, что описанные окружности треугольников<i> BKD </i>и<i> CLD </i>вторично пересекаются на фиксированной окружности.
У двух треугольников равны наибольшие стороны и равны наименьшие углы. Строится новый треугольник со сторонами, равными суммам соответствующих сторон данных треугольников (складываются наибольшие стороны двух треугольников, средние по длине стороны и наименьшие стороны). Докажите, что площадь нового треугольника не меньше удвоенной суммы площадей исходных.
25 мальчиков и несколько девочек собрались на вечеринке и обнаружили забавную закономерность. Если выбрать любую группу не меньше чем из 10 мальчиков, а потом добавить к ним всех девочек, знакомых хотя бы с одним из этих мальчиков, то в получившейся группе число мальчиков окажется на 1 меньше, чем число девочек. Докажите, что некоторая девочка знакома не менее чем с 16 мальчиками.
Петя придумал 1004 приведённых квадратных трёхчлена <i>f</i><sub>1</sub>, ..., <i>f</i><sub>1004</sub>, среди корней которых встречаются все целые числа от 0 до 2007. Вася рассматривает всевозможные уравнения <i>f<sub>i</sub> = f<sub>j</sub></i> (<i>i ≠ j</i>), и за каждый найденный у них корень Петя платит Васе по рублю. Каков наименьший возможный доход Васи?