Олимпиадные задачи из источника «2003-2004» для 8 класса - сложность 1-3 с решениями

Можно ли во всех точках плоскости с целыми координатами записать натуральные числа так, чтобы три точки с целыми координатами лежали на одной прямой тогда и только тогда, когда записанные в них числа имели общий делитель, больший единицы?

Набор пятизначных чисел ${N_1, \dots, N_k}$ таков, что любое пятизначное число, все цифры которого идут в возрастающем порядке, совпадает хотя бы в одном разряде хотя бы с одним из чисел $N_1, \dots, N_k$. Найдите наименьшее возможное значение $k$.

Может ли в наборе из шести чисел  (<i>a, b, c</i>, <sup><i>a</i>²</sup>/<sub><i>b</i></sub>, <sup><i>b</i>²</sup>/<sub><i>c</i></sub>, <sup><i>c</i>²</sup>/<sub><i>a</i></sub>},  где <i>a, b, c</i> – положительные числа, оказаться ровно три различных числа?

В ячейки куба 11×11×11 поставлены по одному числа 1, 2, ..., 1331. Из одного углового кубика в противоположный угловой отправляются два червяка. Каждый из них может проползать в соседний по грани кубик, при этом первый может проползать, если число в соседнем кубике отличается на 8, второй – если отличается на 9. Существует ли такая расстановка чисел, что оба червяка смогут добраться до противоположного углового кубика?

В остроугольном треугольнике расстояние от середины каждой стороны до противоположной вершины равно сумме расстояний от неё до сторон треугольника. Докажите, что этот треугольник – равносторонний.

Имеется набор гирь со следующими свойствами:<ol type="a"> <li>В нем есть 5 гирь, попарно различных по весу.

</li><li>Для любых двух гирь найдутся две другие гири того же суммарного веса. </li></ol>Какое наименьшее число гирь может быть в этом наборе?

По двум пересекающимся дорогам с равными постоянными скоростями движутся автомобили "Ауди" и БМВ. Оказалось, что как в 17.00, так и в 18.00 БМВ находился в два раза дальше от перекрёстка, чем "Ауди". В какое время "Ауди" мог проехать перекрёсток?

Три натуральных числа таковы, что произведение каждых двух из них делится на сумму этих двух чисел.

Докажите, что эти три числа имеют общий делитель, больший единицы.

Набор пятизначных чисел<i> {N<sub>1</sub> </i>,<i> N<sub>k</sub>} </i>таков, что любое пятизначное число, все цифры которого идут в неубывающем порядке, совпадает хотя бы в одном разряде хотя бы с одним их чисел<i> N<sub>1</sub> </i>,<i> N<sub>k</sub> </i>. Найдите наименьшее возможное значение<i> k </i>.

В языке жителей Банановой Республики количество слов превышает количество букв в их алфавите. Докажите, что найдется такое натуральное<i> k </i>, для которого можно выбрать<i> k </i>различных слов, в записи которых используется ровно<i> k </i>различных букв.

Пусть <i>O</i> – центр описанной окружности остроугольного треугольника <i>ABC, T</i> – центр описанной окружности треугольника <i>AOC, M</i> – середина <i>AC</i>. На сторонах <i>AB</i> и <i>BC</i> выбраны точки <i>D</i> и <i>E</i> соответственно так, что  ∠<i>BDM</i> = ∠<i>BEM</i> = ∠<i>B</i>.  Докажите, что  <i>BT</i> ⊥ <i>DE</i>.

Даны натуральное число  <i>n</i> > 3  и положительные числа <i>x</i><sub>1</sub>, <i>x</i><sub>2</sub>, ..., <i>x<sub>n</sub></i>, произведение которых равно 1.

Докажите неравенство  <img align="middle" src="/storage/problem-media/109811/problem_109811_img_2.gif">

На столе стоят 2004 коробочки, в каждой из которых лежит по одному шарику. Известно, что некоторые из шариков– белые, и их количество четно. Разрешается указать на любые две коробочки и спросить, есть ли в них хотя бы один белый шарик. За какое наименьшее количество вопросов можно гарантированно определить какие-нибудь две коробочки, в которых лежат белые шарики?

Четырехугольник<i> ABCD </i>описан около окружности. Биссектрисы внешних углов<i> A </i>и<i> B </i>пересекаются в точке<i> K </i>, внешних углов<i> B </i>и<i> C </i>– в точке<i> L </i>, внешних углов<i> C </i>и<i> D </i>– в точке<i> M </i>, внешних углов<i> D </i>и<i> A </i>– в точке<i> N </i>. Пусть<i> K<sub>1</sub> </i>,<i> L<sub>1</sub> </i>,<i> M<sub>1</sub> </i>,<i> N<sub>1</sub> </i>– точки пересечения высот треугольников<i> ABK </i>,<i> BCL </i>,<i> CDM </i>,<i> DAN </i>соответственно. До...

Каждая целочисленная точка плоскости окрашена в один из трех цветов, причем все три цвета присутствуют. Докажите, что найдется прямоугольный треугольник с вершинами трех разных цветов.

Три окружности ω<sub>1</sub>, ω<sub>2</sub> и ω<sub>3</sub> радиуса <i>r</i> проходят через точку <i>S</i> и касаются внутренним образом окружности ω радиуса <i>R</i>  (<i>R > r</i>)  в точках <i>T</i><sub>1</sub>, <i>T</i><sub>2</sub> и <i>T</i><sub>3</sub> соответственно. Докажите, что прямая <i>T</i><sub>1</sub><i>T</i><sub>2</sub> проходит через вторую (отличную от <i>S</i>) точку пересечения окружностей ω<sub>1</sub> и ω<sub>2</sub>.

В треугольнике<i> ABC </i>медианы<i> AA' </i>,<i> BB' </i>и<i> CC' </i>продлили до пересечения с описанной окружностью в точках<i> A</i>0,<i> B</i>0и<i> C</i>0соответственно. Известно, что точка<i> M </i>пересечения медиан треугольника<i> ABC </i>делит отрезок<i> AA</i>0пополам. Докажите, что треугольник<i> A</i>0<i>B</i>0<i>C</i>0– равнобедренный.

Пусть <i>ABCD</i> – четырёхугольник с параллельными сторонами <i>AD</i> и <i>BC; M</i> и <i>N</i> – середины его сторон <i>AB</i> и <i>CD</i> соответственно. Прямая <i>MN</i> делит пополам отрезок, соединяющий центры окружностей, описанных около треугольников <i>ABC</i> и <i>ADC</i>. Докажите, что <i>ABCD</i> – параллелограмм.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка