Олимпиадные задачи из источника «Региональный этап» для 7-8 класса - сложность 3-4 с решениями
На выборах в городскую Думу каждый избиратель, если он приходит на выборы, отдает голос за себя (если он является кандидатом) и за тех кандидатов, которые являются его друзьями. Прогноз социологической службы мэрии считается хорошим, если в нем правильно предсказано количество голосов, поданных хотя бы за одного из кандидатов, и нехорошим в противном случае. Докажите, что при любом прогнозе избиратели могут так явиться на выборы, что этот прогноз окажется нехорошим.
У нескольких крестьян есть 128 овец. Если у кого-то из них оказывается не менее половины всех овец, остальные сговариваются и раскулачивают его: каждый берёт себе столько овец, сколько у него уже есть. Если у двоих по 64 овцы, то раскулачивают кого-то одного из них. Произошло 7 раскулачиваний. Докажите, что все овцы собрались у одного крестьянина.
Существуют ли такие <i>n</i>-значные числа <i>M</i> и <i>N</i>, что все цифры <i>M</i> – чётные, все цифры <i>N</i> – нечётные, каждая цифра от 0 до 9 встречается в десятичной записи <i>M</i> или <i>N</i> хотя бы один раз и <i>M</i> делится на <i>N</i>?
Ножки циркуля находятся в узлах бесконечного листа клетчатой бумаги, клетки которого – квадраты со стороной 1. Разрешается, не меняя раствора циркуля, поворотом его вокруг одной из ножек перемещать вторую ножку в другой узел на листе. Можно ли за несколько таких шагов поменять ножки циркуля местами?
Дан биллиард в форме правильного 1998-угольника <i>A</i><sub>1</sub><i>A</i><sub>2</sub>...<i>A</i><sub>1998</sub>. Из середины стороны <i>A</i><sub>1</sub><i>A</i><sub>2</sub> выпустили шар, который, отразившись последовательно от сторон <i>A</i><sub>2</sub><i>A</i><sub>3</sub>, <i>A</i><sub>3</sub><i>A</i><sub>4</sub>, ..., <i>A</i><sub>1998</sub><i>A</i><sub>1</sub> (по закону "угол падения равен углу отражения"), вернулся в исходную точку. Докажите, что траектория шара – правильный 1998-угольник.
На концах клетчатой полоски размером1×101клеток стоят две фишки: слева – фишка первого игрока, справа – второго. За ход разрешается сдвинуть свою фишку в направлении противоположного края полоски на 1, 2, 3 или 4 клетки. При этом разрешается перепрыгивать через фишку соперника, но запрещается ставить свою фишку на одну клетку с ней. Выигрывает тот, кто первым достигнет противоположного края полоски. Кто выиграет при правильной игре: тот, кто ходит первым, или его соперник?
Назовём десятизначное число <i>интересным</i>, если оно делится на 11111 и все его цифры различны. Сколько существует интересных чисел?
Куб со стороной<i> n </i>(<i> n<img src="/storage/problem-media/109948/problem_109948_img_2.gif"></i>3) разбит перегородками на единичные кубики. Какое минимальное число перегородок между единичными кубиками нужно удалить, чтобы из каждого кубика можно было добраться до границы куба?
В пятиугольнике <i>A</i><sub>1</sub><i>A</i><sub>2</sub><i>A</i><sub>3</sub><i>A</i><sub>4</sub><i>A</i><sub>5</sub> проведены биссектрисы <i>l</i><sub>1</sub>, <i>l</i><sub>2</sub>, ..., <i>l</i><sub>5</sub> углов <i>A</i><sub>1</sub>, <i>A</i><sub>2</sub>, ..., <i>A</i><sub>5</sub> соответственно. Биссектрисы <i>l</i><sub>1</sub> и <i>l</i><sub>2</sub> пересекаются в точке <i>B</i><sub>1</sub>, <i>l</i><sub>2</sub> и <i>l</i...
В первые 1999 ячеек компьютера в указанном порядке записаны числа: 1, 2, 4,2<i></i>1998. Два программиста по очереди уменьшают за один ход на единицу числа в пяти различных ячейках. Если в одной из ячеек появляется отрицательное число, то компьютер ломается, и сломавший его оплачивает ремонт. Кто из программистов может уберечь себя от финансовых потерь независимо от ходов партнера, и как он должен для этого действовать?
Из бесконечной шахматной доски вырезали многоугольник со сторонами, идущими по сторонам клеток. Отрезок периметра многоугольника называется черным, если примыкающая к нему изнутри многоугольника клетка – черная, соответственно белым, если клетка белая. Пусть<i> A </i>– количество черных отрезков на периметре,<i> B </i>– количество белых, и пусть многоугольник состоит из<i> a </i>черных и<i> b </i>белых клеток. Докажите, что<i> A-B=</i>4(<i>a-b</i>).
На доске записано целое число. Его последняя цифра запоминается, затем стирается и, умноженная на 5, прибавляется к тому числу, что осталось на доске после стирания. Первоначально было записано число 7<sup>1998</sup>. Может ли после применения нескольких таких операций получиться число 1998<sup>7</sup>?
На столе лежали две колоды, по 36 карт в каждой. Первую колоду перетасовали и положили на вторую. Затем для каждой карты первой колоды подсчитали количество карт между ней и такой же картой второй колоды (то есть сколько карт между семёрками червей, между дамами пик, и т.д.). Чему равна сумма 36 полученных чисел?