Олимпиадные задачи из источника «1993-1994» - сложность 2 с решениями
1993-1994
НазадИзвестно, что уравнение <i>ax</i><sup>5</sup> + <i>bx</i><sup>4</sup> + <i>c</i> = 0 имеет три различных корня. Докажите, что уравнение <i>cx</i><sup>5</sup> + <i>bx + a</i> = 0 также имеет три различных корня.
Докажите тождество <center><i> <img src="/storage/problem-media/109569/problem_109569_img_2.gif">+ <img src="/storage/problem-media/109569/problem_109569_img_3.gif">+..+ <img src="/storage/problem-media/109569/problem_109569_img_4.gif">=
<img src="/storage/problem-media/109569/problem_109569_img_5.gif">+ <img src="/storage/problem-media/109569/problem_109569_img_6.gif">+..+ <img src="/storage/problem-media/109569/problem_109569_img_7.gif">.
</i></center>
Докажите, что для натуральных чисел <i>k, m</i> и <i>n</i> справедливо неравенство [<i>k, m</i>][<i>m, n</i>][<i>n, k</i>] ≥ [<i>k, m, n</i>]².
Даны такие натуральные числа<i>a</i>и<i>b</i>, что число <sup><i>a</i>+1</sup>/<sub><i>b</i></sub>+<sup><i>b</i>+1</sup>/<sub><i>a</i></sub> является целым. Докажите, что наибольший общий делитель чисел<i>a</i>и<i>b</i>не превосходит числа <img align="absmiddle" src="/storage/problem-media/109551/problem_109551_img_2.gif">.
Города<i> A </i>,<i> B </i>,<i> C </i>и<i> D </i>расположены так, что расстояние от<i> C </i>до<i> A </i>меньше, чем расстояние от<i> D </i>до<i> A </i>, а расстояние от<i> C </i>до<i> B </i>меньше, чем расстояние от<i> D </i>до<i> B </i>. Докажите, что расстояние от города<i> C </i>до любой точки прямолинейной дороги, соединяющей города<i> A </i>и<i> B </i>, меньше, чем расстояние от<i> D </i>до этой точки.
Найдите все простые числа, которые равны сумме двух простых чисел и разности двух простых чисел.