Олимпиадные задачи из источника «5 турнир (1983/1984 год)» для 10 класса

  Для каждого натурального <i>n</i> обозначим через <i>P</i>(<i>n</i>) число разбиений <i>n</i> в сумму натуральных слагаемых (разбиения, отличающиеся лишь порядком слагаемых, считаются одинаковыми; например,  <i>P</i>(4) = 5,  потому что  4 = 4 = 1 + 3 = 2 + 2 = 1 + 1 + 2 = 1 + 1 + 1 + 1  – пять способов).

  а) Количество различных чисел в данном разбиении назовем его <i>разбросом</i> (например, разбиение  4 = 1 + 1 + 2  имеет разброс 2, потому что в этом разбиении два различных числа). Докажите, что сумма <i>Q</i>(<i>n</i>) разбросов всех разбиений числа <i>n</i> равна   1 + <i>P</i>(1) + <i>P</i>(2) + ... + <i>P</i>(<i>n</i>–1)....

По одной стороне бесконечного коридора расположено бесконечное количество комнат, занумерованных числами от минус бесконечности до плюс бесконечности. В комнатах живут 9 пианистов (в одной комнате могут жить несколько пианистов), кроме того, в каждой комнате находится по роялю. Каждый день какие-то два пианиста, живущие в соседних комнатах (<i>k</i>-й и (<i>k</i>+1)-й), приходят к выводу, что они мешают друг другу, и переселяются соответственно в (<i>k</i>–1)-ю и (<i>k</i>+2)-ю комнаты. Докажите, что через конечное число дней эти переселения прекратятся. (Пианисты, живущие в одной комнате, друг другу не мешают.)

Из вершин основания тетраэдра в боковых гранях провели высоты, а затем в каждой из боковых граней основания двух лежащих в ней высот соединили прямой. Докажите, что эти три прямые параллельны одной плоскости.

<i>F</i>(<i>x</i>) – возрастающая функция, определённая на отрезке  [0, 1].  Известно, что область её значений принадлежит отрезку  [0, 1].  Доказать, что, каково бы ни было натуральное <i>n</i>, график функции можно покрыть <i>N</i> прямоугольниками, стороны которых параллельны осям координат так, что площадь каждого равна <sup>1</sup>/<sub><i>n</i>²</sub>. (В прямоугольник мы включаем его внутренние точки и точки его границы.)

Докажите, что существует бесконечное число пар таких соседних натуральных чисел, что разложение каждого из них содержит любой простой сомножитель не менее чем во второй степени. Примеры таких пар чисел:  (8, 9),  (288, 289).

Дана бесконечная клетчатая бумага со стороной клетки, равной единице. Расстоянием между двумя клетками называется длина кратчайшего пути ладьи от одной клетки до другой (считается путь центра ладьи). В какое наименьшее число красок нужно раскрасить доску (каждая клетка закрашивается одной краской), чтобы две клетки, находящиеся на расстоянии 6, были всегда окрашены разными красками?

Через <i>P</i>(<i>x</i>) обозначается произведение всех цифр натурального числа <i>x</i>, через <i>S</i>(<i>x</i>) – сумма цифр числа <i>x</i>.

Сколько решений имеет уравнение:   <i>P</i>(<i>P</i>(<i>x</i>)) + <i>P</i>(<i>S</i>(<i>x</i>)) + <i>S</i>(<i>P</i>(<i>x</i>)) + <i>S</i>(<i>S</i>(<i>x</i>)) = 1984 ?

На бесконечной во все стороны шахматной доске выделено некоторое множество клеток <i>A</i>. На всех клетках доски, кроме множества <i>A</i>, стоят короли. Все короли могут по команде одновременно сделать ход, заключающийся в том, что король либо остаётся на месте, либо занимает соседнее поле, то есть делает "ход короля". При этом он может занять и то поле, с которого сходит другой король, но в результате хода двум королям оказаться в одной клетке запрещается. Существует ли такое <i>k</i> и такой способ движения королей, что после <i>k</i> ходов вся доска будет заполнена королями? Рассмотрите варианты:

  а) <i>A</i> есть множество всех клеток, у которых обе координаты кратны 100 (предполагается, что одна горизонтальная...

<i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, <i>a</i><sub>3</sub>, ...  – возрастающая последовательность натуральных чисел. Известно, что  <i>a<sub>a<sub>k</sub></sub></i> = 3<i>k</i>  для любого <i>k</i>.

Найти   а)  <i>a</i><sub>100</sub>;   б)  <i>a</i><sub>1983</sub>.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка