Олимпиадные задачи из источника «42 турнир (2020/2021 год)» для 11 класса
42 турнир (2020/2021 год)
НазадСуществует ли описанный 2021-угольник, все вершины и центр вписанной окружности которого имеют целочисленные координаты?
Полиция задержала 50 человек, из которых 35 – преступники, которые говорят, что захотят, а 15 – свидетели, которые всегда говорят правду. Все задержанные знают, кто преступники. Какое наименьшее число человек достаточно выбрать, чтобы спросив потом у каждого, кто именно преступники, по ответам вычислить хотя бы одного преступника?
Возрастающая последовательность натуральных чисел $a_1 < a_2 < \dots$ такова, что при каждом целом $n > 100$ число $a_n$ равно наименьшему натуральному числу, большему чем $a_{n-1}$ и не делящемуся ни на одно из чисел $a_1, a_2, \dots, a_{n-1}$. Докажите, что в такой последовательности лишь конечное количество составных чисел.
Точка $I$ – центр вписанной окружности треугольника $ABC$, а $T$ – точка касания этой окружности со стороной $AC$. Пусть $P$ и $Q$ – ортоцентры треугольников $BAI$ и $BCI$. Докажите, что точки $T$, $P$, $Q$ лежат на одной прямой.
Петя и Вася по очереди красят рёбра $N$-угольной пирамиды: Петя – в красный цвет, а Вася – в зелёный (ребро нельзя красить дважды). Начинает Петя. Выигрывает Вася, если после того, как все рёбра окрашены, из любой вершины пирамиды в любую другую вершину ведёт ломаная, состоящая из зелёных рёбер. В противном случае выигрывает Петя. Кто из игроков может действовать так, чтобы всегда выигрывать, как бы ни играл его соперник?
Каждая из функций $f(x)$ и $g(x)$ определена на всей числовой прямой и не является строго монотонной. Может ли быть, что и их сумма, и их разность строго монотонны на всей числовой прямой?
Дано целое $n>2$. На сфере радиуса 1 требуется расположить $n$ попарно не пересекающихся дуг больших окружностей, все дуги равной длины $\alpha$. Докажите, что
а) при любом $\alpha<\pi+\frac{2\pi}n$ это возможно;
б) при любом $\alpha>\pi+\frac{2\pi}n$ это невозможно.
Найдите хоть одно вещественное число $A$ со свойством: для любого натурального $n$ расстояние от верхней целой части числа $A^n$ до ближайшего квадрата целого числа равно 2. (Верхняя целая часть числа $x$ – наименьшее целое число, не меньшее $x$.)
Существует ли такое натуральное $n$, что для любых вещественных чисел $x$ и $y$ найдутся вещественные числа $a_1, \ldots, a_n$, удовлетворяющие равенствам $$x = a_1 + \ldots + a_n\quad \text{и} \quad y = \frac{1}{a_1}+ \ldots + \frac{1}{a_n}?$$
В отель ночью приехали $100$ туристов. Они знают, что в отеле есть одноместные номера $1$, $2, \ldots, n$, из которых $k$ на ремонте (но неизвестно какие), а остальные свободны. Туристы могут заранее договориться о своих действиях, после чего по очереди уходят заселяться: каждый проверяет номера в любом порядке, находит первый свободный номер не на ремонте и остаётся там ночевать. Но туристы не хотят беспокоить друг друга: нельзя проверять номер, куда уже кто-то заселился. Для каждого $k$ укажите наименьшее $n$, при котором туристы гарантированно смогут заселиться, не потревожив друг друга.
В комнате находится несколько детей и куча из 1000 конфет. Дети по очереди подходят к куче. Каждый подошедший делит количество конфет в куче на количество детей в комнате, округляет (если получилось нецелое), забирает полученное число конфет и выходит из комнаты. При этом мальчики округляют вверх, а девочки – вниз. Докажите, что суммарное количество конфет у мальчиков, когда все выйдут из комнаты, не зависит от порядка детей в очереди.
Пусть $O$ – центр описанной окружности остроугольного треугольника $ABC$, точка $M$ – середина стороны $AC$. Прямая $BO$ пересекает высоты $AA_1$ и $CC_1$ в точках $H_a$ и $H_c$ соответственно. Описанные окружности треугольников $BH_aA$ и $BH_cC$ вторично пересекаются в точке $K$. Докажите, что $K$ лежит на прямой $BM$.
Как известно, квадратное уравнение имеет не более двух корней. А может ли уравнение $[x^2] + px + q = 0$ при $p \ne 0$ иметь более 100 корней? ($[x^2]$ обозначает наибольшее целое число, не превосходящее $x^2$.)
При каких натуральных $n$ найдутся $n$ последовательных натуральных чисел, произведение которых равно сумме (может быть, других) $n$ последовательных натуральных чисел?
а) У Тани есть 4 одинаковые с виду гири, массы которых равны 1000, 1002, 1004 и 1005 г (неизвестно, где какая), и чашечные весы (показывающие, какая из двух чаш перевесила или что имеет место равенство). Может ли Таня за 4 взвешивания гарантированно определить, где какая гиря? (Следующее взвешивание выбирается по результатам прошедших.) б) Тот же вопрос, если у весов левая чашка на 1 г легче правой, так что весы показывают равенство, если масса на левой чашке на 1 г больше, чем на правой.
а) Выпуклый пятиугольник разбили непересекающимися диагоналями на три треугольника. Могут ли точки пересечения медиан этих треугольников лежать на одной прямой? б) Тот же вопрос для невыпуклого пятиугольника.
Может ли произведение каких-то 9 последовательных натуральных чисел равняться сумме (может быть, других) 9 последовательных натуральных чисел?
Белая фигура «жук» стоит в угловой клетке доски $1000\times n$, где $n$ — нечётное натуральное число, большее $2020$. В двух ближайших к ней углах доски стоят два чёрных шахматных слона. При каждом ходе жук или переходит на клетку, соседнюю по стороне, или ходит как шахматный конь. Жук хочет достичь противоположного угла доски, не проходя через клетки, занятые или атакованные слоном, и побывав на каждой из остальных клеток ровно по одному разу. Покажите, что количество путей, по которым может пройти жук, не зависит от $n$.
Петя и Вася по очереди пишут на доску дроби вида $1/n$, где $n$ — натуральное, начинает Петя. Петя за ход пишет только одну дробь, а Вася за первый ход — одну, за второй ход — две, и так каждым следующим ходом на одну дробь больше. Вася хочет, чтобы после какого-то хода сумма всех дробей на доске была натуральным числом. Сможет ли Петя помешать ему?
Существует ли прямоугольник, который можно разрезать на 100 прямоугольников, которые все ему подобны, но среди которых нет двух одинаковых?
Окружности $\alpha$ и $\beta$ с центрами в точках $A$ и $B$ соответственно пересекаются в точках $C$ и $D$. Отрезок $AB$ пересекает окружности $\alpha$ и $\beta$ в точках $K$ и $L$ соответственно. Луч $DK$ вторично пересекает окружность $\beta$ в точке $N$, а луч $DL$ вторично пересекает окружность $\alpha$ в точке $M$. Докажите, что точка пересечения диагоналей четырёхугольника $KLMN$ совпадает с центром вписанной окружности треугольника $ABC$.
Барон Мюнхгаузен придумал теорему: если многочлен $x^n - a x^{n-1} + bx^{n-2} + \ldots $ имеет $n$ натуральных корней, то на плоскости найдутся $a$ прямых, у которых ровно $b$ точек пересечения друг с другом. Не ошибается ли барон?
Даны $n$ натуральных чисел. Боря для каждой пары этих чисел записал на чёрную доску их среднее арифметическое, а на белую доску — их среднее геометрическое, и для каждой пары хотя бы одно из этих двух средних было целым. Докажите, что хотя бы на одной из досок все числа целые.
Выпуклый четырёхугольник $ABCD$ обладает таким свойством: ни из каких трёх его сторон нельзя сложить треугольник. Докажите, что а) один из углов этого четырёхугольника не больше $60^\circ$; б) один из углов этого четырёхугольника не меньше $120^\circ$.
За каждым из двух круглых столиков сидит по $n$ гномов. Каждый дружит только со своими соседями по столику слева и справа. Добрый волшебник хочет рассадить гномов за один круглый стол так, чтобы каждые два соседних гнома дружили между собой. Он имеет возможность подружить $2n$ пар гномов (гномы в паре могут быть как с одного столика, так и с разных), но после этого злой волшебник поссорит между собой $n$ пар гномов из этих $2n$ пар. При каких $n$ добрый волшебник может добиться желаемого, как бы ни действовал злой волшебник?