Олимпиадные задачи из источника «33 турнир (2011/2012 год)» - сложность 3 с решениями
33 турнир (2011/2012 год)
НазадВнутри каждой грани единичного куба выбрали по точке. Затем каждые две точки, лежащие на соседних гранях, соединили отрезком.
Докажите, что сумма длин этих отрезков не меньше, чем <img align="absmiddle" src="/storage/problem-media/116727/problem_116727_img_2.gif"> .
Докажите, что для любого натурального <i>n</i> существуют такие целые числа <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ..., <i>a<sub>n</sub></i>, что при всех целых <i>x</i> число
(...((<i>x</i>² + <i>a</i><sub>1</sub>)² + <i>a</i><sub>2</sub>)² + ... + <i>a</i><sub><i>n</i>–1</sub>)² + <i>a<sub>n</sub></i> делится на 2<i>n</i> – 1.
Внутри круга отмечены 100 точек, никакие три из которых не лежат на одной прямой.
Докажите, что их можно разбить на пары и провести прямую через каждую пару так, чтобы все точки пересечения прямых были в круге.
В равностороннем треугольнике <i>ABC</i> провели высоту <i>AH</i>. В треугольнике <i>ABH</i> отметили точку <i>I</i> пересечения биссектрис. В треугольниках <i>ABI, BCI</i> и <i>CAI</i> тоже отметили точки пересечения биссектрис – <i>L, K</i> и <i>J</i> соответственно. Найдите угол <i>KJL</i>.
Банк обслуживает миллион клиентов, список которых известен Остапу Бендеру. У каждого есть свой PIN-код из шести цифр, у разных клиентов коды разные. Остап Бендер за один ход может выбрать любого клиента, которого он еще не выбирал, и подсмотреть у него цифры кода на любых <i>N</i> позициях (у разных клиентов он может выбирать разные позиции). Остап хочет узнать код миллионера Корейко. При каком наименьшем <i>N</i> он гарантированно сможет это сделать?
Пусть <i>p</i> – простое число. Набор из <i>p</i> + 2 натуральных чисел (не обязательно различных) назовём <i>интересным</i>, если сумма любых <i>p</i> из них делится на каждое из двух оставшихся чисел. Найдите все интересные наборы.
В команде сторожей у каждого есть разряд (натуральное число). Сторож <i>N</i>-го разряда <i>N</i> суток дежурит, потом <i>N</i> суток спит, снова <i>N</i> суток дежурит, <i>N</i> – спит, и так далее. Известно, что разряды любых двух сторожей различаются хотя бы в три раза. Может ли такая команда осуществлять ежедневное дежурство? (Приступить к дежурству сторожа могут не одновременно, в один день могут дежурить несколько сторожей.)
Белая ладья стоит на поле b2 шахматной доски 8×8, а чёрная – на поле c4. Игроки ходят по очереди, каждый – своей ладьей, начинают белые. Запрещается ставить свою ладью под бой другой ладьи, а также на поле, где уже побывала какая-нибудь ладья. Тот, кто не может сделать ход, проигрывает. Кто из игроков может обеспечить себе победу, как бы ни играл другой? (За ход ладья сдвигается по горизонтали или вертикали на любое число клеток, и считается, что она побывала только в начальной и конечной клетках этого хода.)
У Носорога на шкуре есть вертикальные и горизонтальные складки. Всего складок 17. Если Носорог чешется боком о дерево, то либо две горизонтальные, либо две вертикальные складки на этом боку пропадают, зато на другом боку прибавляются две складки: горизонтальная и вертикальная. (Если двух складок одного направления нет, то ничего не происходит.) Носорог почесался несколько раз. Могло ли случиться, что на каждом боку вертикальных складок стало столько, сколько там раньше было горизонтальных, а горизонтальных стало столько, сколько там было вертикальных?
Вершины правильного 45-угольника раскрашены в три цвета, причём вершин каждого цвета поровну. Докажите, что можно выбрать по три вершины каждого цвета так, чтобы три треугольника, образованные выбранными одноцветными вершинами, были равны.
Докажите, что при <i>n</i> > 1 число 1<sup>1</sup> + 3³ + ... + (2<sup><i>n</i></sup> – 1)<sup>2<sup><i>n</i></sup> – 1</sup> делится на 2<i><sup>n</sup></i>, но не делится на 2<sup><i>n</i>+1</sup>.
Назовём натуральное число <i>хорошим</i>, если все его цифры ненулевые. Хорошее число назовём <i>особым</i>, если в нём хотя бы <i>k</i> разрядов и цифры идут в порядке строгого возрастания (слева направо). Пусть имеется некое хорошее число. За ход разрешается приписать с любого края или вписать между любыми его двумя цифрами особое число или же, наоборот, стереть в его записи особое число. При каком наибольшем <i>k</i> можно из каждого хорошего числа получить любое другое хорошее число с помощью таких ходов?
Существует ли выпуклый <i>N</i>-угольник, все стороны которого равны, а все вершины лежат на параболе <i>y = x</i>², если
а) <i>N</i> = 2011;
б) <i>N</i> = 2012?
По прямому шоссе со скоростью 60 км в час едет машина. Недалеко от шоссе стоит параллельный ему 100-метровый забор. Каждую секунду пассажир машины измеряет угол, под которым виден забор. Докажите, что сумма всех измеренных им углов меньше 1100°.
На плоскости даны 10 прямых общего положения. При каждой точке пересечения выбирается наименьший угол, образованный проходящими через неё прямыми. Найдите наибольшую возможную сумму всех этих углов.
По шоссе в одну сторону движутся пешеход и велосипедист, в другую сторону – телега и машина. Все участники движутся с постоянными скоростями (каждый со своей). Велосипедист сначала обогнал пешехода, потом через некоторое время встретил телегу, а потом ещё через такое же время встретил машину. Машина сначала встретила велосипедиста, потом через некоторое время встретила пешехода, и потом ещё через такое же время обогнала телегу. Велосипедист обогнал пешехода в 10 часов, а пешеход встретил машину в 11 часов. Когда пешеход встретил телегу?