Олимпиадные задачи из источника «28 турнир (2006/2007 год)» - сложность 3 с решениями

Выпуклая фигура <i>F</i> обладает следующим свойством: любой правильный треугольник со стороной 1 можно параллельно перенести так, что все его вершины попадут на границу <i>F</i>. Обязательно ли <i>F</i> – круг?

Можно ли разбить какую-нибудь призму на непересекающиеся пирамиды, у каждой из которых основание лежит на одном из оснований призмы, а противоположная вершина – на другом основании призмы?

В числе  <i>a</i> = 0,12457...  <i>n</i>-я цифра после запятой равна цифре слева от запятой в числе  <img align="absmiddle" src="/storage/problem-media/109196/problem_109196_img_2.gif">  Докажите, что α – иррациональное число.

На сторонах <i>BC, AC</i> и <i>AB</i> остроугольного треугольника <i>ABC</i> взяты точки <i>A</i><sub>1</sub>, <i>B</i><sub>1</sub> и <i>C</i><sub>1</sub> так, что лучи <i>A</i><sub>1</sub><i>A, B</i><sub>1</sub><i>B</i> и <i>С</i><sub>1</sub><i>C</i> являются биссектрисами углов треугольника <i>A</i><sub>1</sub><i>B</i><sub>1</sub><i>C</i><sub>1</sub>. Докажите, что <i>AA</i><sub>1</sub>, <i>BB</i><sub>1</sub> и <i>СС</i><sub>1</sub> – высоты тре...

Пусть  <img width="120" height="41" align="absmiddle" src="/storage/problem-media/109193/problem_109193_img_2.gif"> = <img width="23" height="47" align="absmiddle" src="/storage/problem-media/109193/problem_109193_img_3.gif">,  где  <img width="23" height="47" align="absmiddle" src="/storage/problem-media/109193/problem_109193_img_3.gif">  – несократимая дробь.

Докажите, что неравенство  <i>b</i><sub><i>n</i>+1</sub> < <i>b<sub>n</sub></i> выполнено для бесконечного числа натуральных <i>n</i>.

<i>Обёрткой</i> плоской картины размером 1×1 назовём прямоугольный лист бумаги площади 2, которым можно, не разрезая его, полностью обернуть картину с обеих сторон. Например, прямоугольник 2×1 и квадрат со стороной  <img align="absmiddle" src="/storage/problem-media/109192/problem_109192_img_2.gif">   – обёртки.

  а) Докажите, что есть и другие обёртки.   б) Докажите, что обёрток бесконечно много.

<img align="right" src="/storage/problem-media/109190/problem_109190_img_2.gif"> В квадрате 3×3 расставлены числа (см. рис.). Известно, что квадрат магический: сумма чисел в каждом столбце, в каждой строке и на каждой диагонали одна и та же. Докажите, что

  а)  2(<i>a + c + g + i</i>) = <i>b + d + f + h</i> + 4<i>e</i>.

  б)  2(<i>a</i>³ + <i>c</i>³ + <i>g</i>³ + <i>i</i>³) = <i>b</i>³ + <i>d</i>³ + <i>f</i> ³ + <i>h</i>³ + 4<i>e</i>³.

Попав в новую компанию, Чичиков узнавал, кто с кем знаком. А чтобы запомнить это, он рисовал окружность и изображал каждого члена компании хордой, причём хорды знакомых между собой пересекались, а незнакомых – нет. Чичиков уверен, что такой набор хорд есть для любой компании. Прав ли он? (Совпадение концов хорд считается пересечением.)

От правильного октаэдра со стороной 1 отрезали шесть углов – пирамидок с квадратным основанием и ребром &frac13;. Получился многогранник, грани которого – квадраты и правильные шестиугольники. Можно ли копиями такого многогранника замостить пространство?

Пусть  <i>f</i>(<i>x</i>) – некоторый многочлен ненулевой степени.

Может ли оказаться, что уравнение  <i>f</i>(<i>x</i>) = <i>a</i>  при любом значении <i>a</i> имеет чётное число решений?

Капитан Врунгель в своей каюте разложил перетасованную колоду из 52 карт по кругу, оставив одно место свободным. Матрос Фукс с палубы, не отходя от штурвала и не зная начальной раскладки, называет карту. Если эта карта лежит рядом со свободным местом, Врунгель её туда передвигает, не сообщая Фуксу. Иначе ничего не происходит. Потом Фукс называет еще одну карту, и так сколько угодно раз, пока он не скажет “стоп”. Может ли Фукс добиться того, чтобы после слова "стоп"

  а) каждая карта наверняка оказалась не там, где была вначале?

  б) рядом со свободным местом наверняка не было туза пик?

В выпуклом <i>n</i>-угольнике провели несколько диагоналей так, что ни в какой точке внутри многоугольника не пересеклись три или более из них. В результате многоугольник разбился на треугольники. Каково наибольшее возможное число треугольников?

Петя взял 20 последовательных натуральных чисел, записал их друг за другом в некотором порядке и получил число <i>M</i>. Вася взял 21 последовательное натуральное число, записал их друг за другом в некотором порядке и получил число <i>N</i>. Могло ли случиться, что  <i>M = N</i>?

а) Торт имеет форму тупоугольного треугольника, в котором тупой угол в 2 раза больше одного из острых углов. Коробка для торта имеет форму того же треугольника, но симметрична ему относительно некоторой прямой. Как разрезать торт на две части, которые можно будет (не переворачивая) уложить в эту коробку? б) Та же задача для торта, имеющего форму треугольника с углами 20°, 30°, 130°. (Торт и коробку считайте плоскими фигурами.)

а) Торт имеет форму треугольника, в котором один угол в 3 раза больше другого. Коробка для торта имеет форму того же треугольника, но симметрична ему относительно некоторой прямой. Как разрезать торт на две части, которые можно будет (не переворачивая) уложить в эту коробку? б) Та же задача для торта в форме тупоугольного треугольника, в котором тупой угол в 2 раза больше одного из острых углов.

(Торт и коробку считайте плоскими фигурами.)

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка