Олимпиадные задачи из источника «весенний тур, основной вариант, 8-9 класс»
весенний тур, основной вариант, 8-9 класс
НазадЗаданы две непересекающиеся окружности с центрами <i>O</i><sub>1</sub> и <i>O</i><sub>2</sub> и их общая внешняя касательная, касающаяся окружностей соответственно в точках <i>A</i><sub>1</sub> и <i>A</i><sub>2</sub>. Пусть <i>B</i><sub>1</sub> и <i>B</i><sub>2</sub> – точки пересечения отрезка <i>O</i><sub>1</sub><i>O</i><sub>2</sub> с соответствующими окружностями, а <i>C</i> – точка пересечения прямых <i>A</i><sub>1</sub><i>B</i><sub>1</sub> и <i>A</i><sub>2</sub><i>B</i><sub>2</sub>. Докажит...
В углу шахматной доски размером <i>m×n</i> полей стоит ладья. Двое по очереди передвигают её по вертикали или по горизонтали на любое число полей; при этом не разрешается, чтобы ладья стала на поле или прошла через поле, на котором она уже побывала (или через которое уже проходила). Проигрывает тот, кому некуда ходить. Кто из играющих может обеспечить себе победу: начинающий или его партнер, и как ему следует играть?
a) Восемь школьников решали восемь задач. Оказалось, что каждую задачу решили пять школьников. Докажите, что найдутся такие два школьника, что каждую задачу решил хотя бы один из них.
б) Если каждую задачу решили четыре ученика, то может оказаться, что таких двоих не найдётся.
В равностороннем треугольнике <i>ABC</i> на стороне <i>AB</i> взята точка <i>D</i> так, что <i>AD = <sup>AB</sup></i>/<sub><i>n</i></sub>.
Докажите,что сумма <i>n</i> – 1 углов, под которыми виден отрезок <i>AD</i> из точек, делящих сторону <i>BC</i> на <i>n</i> равных частей, равна 30°:
а) при <i>n</i> = 3;
б) при произвольном <i>n</i>.
В ряд выписаны действительные числа <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, <i>a</i><sub>3</sub>, ..., <i>a</i><sub>1996</sub>. Докажите, что можно выделить одно или несколько стоящих рядом чисел так, что их сумма будет отличаться от целого числа меньше, чем на 0,001.
Положительные числа <i>a, b, c</i> таковы, что <i>a</i>² + <i>b</i>² – <i>ab = c</i>². Докажите, что (<i>a – c</i>)(<i>b – c</i>) ≤ 0.